Design of an universal source for semi-automatic ac welding and induction heating
- 1. Pryazovskyi State Technical University
- 2. LLC "GSKBV named after BUBNOV"
Description
This paper proposes a circuit solution and a power source control algorithm for semi-automatic AC welding with improved energy and weight-size characteristics. A distinctive feature of the designed source is the absence of an input rectifier: welding is carried out with a high-frequency alternating current. That has made it possible to significantly reduce power losses in the source, as well as provide the possibility of implementing induction heating by connecting an inductor to the source output.
Another distinctive feature of the designed source is an increased power factor and a reduced level of higher harmonics of the current consumed. The power factor of the described source reaches 0.94 against 0.5÷0.7 for sources equipped with a conventional rectifier with capacitive smoothing.
The designed source's composition includes a power supply system for the wire feed drive with speed stabilization due to positive feedback on the motor current. That has made it possible to ensure the stable operation of the drive in a wide range of speeds. A model has also been developed of a flux wire welding torch containing a feed drive and a coil with a wire (up to 100 mm in diameter), placed, in order to reduce the size, in the handle of the torch.
In addition to the welding function, the source makes it possible to solve the tasks related to induction heating and/or hardening of small parts; to that end, a compact inductor is connected to its output.
Tests of the source showed the feasibility of the proposed ideas and circuit solutions. The dimensions of the source are 190×107×65 mm; weight, 1.4 kg; output current, up to 120 A. The proposed technical solution enables the construction of small-sized, lightweight, universal, easy-to-use power supplies for semi-automatic welding with the option of induction heating
Files
Design of an universal source for semi-automatic ac welding and induction heating.pdf
Files
(1.4 MB)
Name | Size | Download all |
---|---|---|
md5:95acc8ed6234e85d52b3f6b918b9890c
|
1.4 MB | Preview Download |
Additional details
References
- Hamzeh, R., Thomas, L., Polzer, J., Xu, X. W., Heinzel, H. (2020). A Sensor Based Monitoring System for Real-Time Quality Control: Semi-Automatic Arc Welding Case Study. Procedia Manufacturing, 51, 201–206. doi: https://doi.org/10.1016/j.promfg.2020.10.029
- Potap'evskiy, A. G., Saraev, Yu. N., Chinahov, D. A. (2012). Svarka staley v zaschitnyh gazah plavyaschimsya elektrodom. Tekhnika i tekhnologiya buduschego. Tomsk: izd-vo Tomskogo politekhnicheskogo universiteta, 208.
- Singh, R. (2012). Applied welding engineering: processes, codes, and standards. Butterworth-Heinemann. doi: https://doi.org/10.1016/C2011-0-00112-6
- Mustafa, F. F., Rao'f, M. I. (2016). Automatic Welding Machine For Pipeline Using MIG Welding Process. International Research Journal of Engineering and Technology (IRJET), 03 (12), 1448–1454. Available at: http://docplayer.net/32498681-Automatic-welding-machine-for-pipeline-using-mig-welding-process.html
- Burlaka, V., Lavrova, E., Podnebennaya, S., Zakharova, I. (2017). Development of single-phase high-power factor inverter welding sources. Eastern-European Journal of Enterprise Technologies, 4 (1 (88)), 18–24. doi: https://doi.org/10.15587/1729-4061.2017.106957
- Svarochniy poluavtomaticheskiy apparat Tesla Weld FCAW 240. Available at: https://teslaweld.com/svarochnyy-poluavtomaticheskiy-apparat-tesla-weld-fcaw-240
- Zvariuvalnyi napivavtomat EDON SmartMIG-275 (2 в 1 MIG MMA). Available at: https://edon-redbo.com.ua/catalog/svarochnyy_poluavtomat_edon_smartmig_275_2_v_1_mig_mma.html
- Svarochniy poluavtomat Kaiser ARC-FLUX 120 (85190). Available at: https://kulibin.com.ua/catalog/svarochnye_poluavtomaty/kaiser-85190/
- Yang, H., Kerui, C., Yang, L., Bao, Q. (2018). FCAW vertical welding of "V" butt plate in AC UHV transmission line construction. MATEC Web of Conferences, 175, 03001. doi: https://doi.org/10.1051/matecconf/201817503001
- Lebedjev, V., Khalimovskyy, O. (2019). Еlectric drives in the equipment for mechanized and automatic arc welding. Scientific Journal of the Ternopil National Technical University, 93 (1), 81–91. doi: https://doi.org/10.33108/visnyk_tntu2019.01.081
- Product Information Chart. Readywelder. Available at: http://readywelder.com.au/readywelders/?pid=welders
- Ivanov, V., Lavrova, E., Burlaka, V., Duhanets, V. (2019). Calculation of the penetration zone geometric parameters at surfacing with a strip electrode. Eastern-European Journal of Enterprise Technologies, 6 (5 (102)), 57–62. doi: https://doi.org/10.15587/1729-4061.2019.187718
- Ivanov, V. P., Lavrova, E. V., Il'yaschenko, D. P., Verkhoturova, E. V. (2020). Modelling of fusion zone formation in shielded metal arc welding. Structural integrity and life, 20 (3), 281–284. Available at: http://divk.inovacionicentar.rs/ivk/ivk20/281-IVK3-2020-VPI-EVL-DPI-EVV.pdf
- BS EN 61000-3-12:2011. Electromagnetic compatibility (EMC). Limits. Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and ≤ 75 A per phase. doi: https://doi.org/10.3403/30183042
- IEC 61000-6-4:2018. Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments. Available at: https://standards.iteh.ai/catalog/standards/iec/32d913f3-8f13-4f51-b595-eb50eb817af9/iec-61000-6-4-2018
- DSTU EN 50160:2014. Voltage characteristics of electricity supplied by public electricity networks (EN 50160:2010, IDT) (2014). Kyiv, 32. Available at: https://www.en.lg.ua/images/stories/2019/standart-yakosti.pdf
- Podnebennaya, S. K., Burlaka, V. V., Gulakov, S. V. (2013). A power parallel active filter with higher efficiency. Russian Electrical Engineering, 84 (6), 308–313. doi: https://doi.org/10.3103/s1068371213060072
- Sundaram, M., Vaideeswaran, V. (2018). Active Power Factor Correction for Welding Power Source. International Journal of Engineering Research & Technology (IJERT), 7 (01), 364–367. Available at: https://www.ijert.org/research/active-power-factor-correction-for-welding-power-source-IJERTV7IS010161.pdf
- Power factor correction: a guide for the plant engineer. Technical Data SA02607001E (2014). EATON. Available at: https://www.eaton.com/ecm/groups/public/%40pub/%40electrical/documents/content/sa02607001e.pdf
- Inverter Power Consumption: Energy Savings (2006). The Lincoln Electric Company. Document No. NX-3.30. Available at: https://www.lincolnelectric.com/assets/US/EN/literature/NX330.pdf
- Podnebenna, S. K., Burlaka, V. V., Gulakov, S. V. (2017). Three-Phase Power Supply For Resistance Welding Machine With Corrected Power Factor. Naukovij Visnik NGU, 4, 67–72. Available at: http://nbuv.gov.ua/UJRN/Nvngu_2017_4_12
- Haque, A. (2016). Valley-Fill Circuit for Power Quality Improvement. International Journal for Innovative Research in Science & Technology, 2 (09), 223–227.
- Bouafassa, A., Fernández-Ramírez, L. M., Babes, B. (2020). Power quality improvements of arc welding power supplies by modified bridgeless SEPIC PFC converter. Journal of Power Electronics, 20 (6), 1445–1455. doi: https://doi.org/10.1007/s43236-020-00143-2
- Khatua, M., Kumar, A., Pervaiz, S., Chakraborty, S., Afridi, K. (2021). A Single-Stage Isolated AC–DC Converter Based on the Impedance Control Network Architecture. IEEE Transactions on Power Electronics, 36 (9), 10366–10382. doi: https://doi.org/10.1109/tpel.2021.3065296
- Ivanov, V., Lavrova, E. V., Kibish, V., Mamontov, I. (2021). Research of the Microstructure of the Deposited Layer during Electric Arc Surfacing with Control Impacts. Materials Science Forum, 1038, 85–92. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.85
- Ivanov, V., Lavrova, E. V., Morgay, F., Semkiv, O. (2021). Investigation of the Heat-Affected Zone Properties During Cladding of Power Equipment with Austenitic Materials Using Control Mechanical Impacts on the Strip Electrode. Materials Science Forum, 1038, 100–107. doi: https://doi.org/10.4028/www.scientific.net/msf.1038.100
- Ivanov, V., Lavrova, E. (2018). Development of the Device for Two-Strip Cladding with Controlled Mechanical Transfer. Journal of Physics: Conference Series, 1059, 012020. doi: https://doi.org/10.1088/1742-6596/1059/1/012020
- Bellec, Q., Le Claire, J.-C., Benkhoris, M. F., Coulibaly, P. (2021). A New Robust Digital Non-Linear Control for Power Factor Correction – Arc Welding Applications. Energies, 14 (4), 991. doi: https://doi.org/10.3390/en14040991
- Ramakrishnaprabu, G., Gunasekar (2016). A Single-Switch Improved Valley-Fill Passive Current Shaper for Compact Fluorescent Lightings. International Journal of Innovative Research in Science, Engineering and Technology, 5 (6), 10567–10573. Available at: http://www.ijirset.com/upload/2016/june/192_A%20SINGLE.pdf
- Burlaka, V., Gulakov, S., Podnebennaya, S., Kudinova, E., Savenko, O. (2020). Bidirectional single stage isolated DC-AC converter. 2020 IEEE KhPI Week on Advanced Technology (KhPIWeek). doi: https://doi.org/10.1109/khpiweek51551.2020.9250107
- Leschinskiy, L. K., Samotugin, S. S. (2005). Sloistye naplavlennye i uprochnennye kompozitsii. Mariupol', 392. Available at: http://eir.pstu.edu/bitstream/handle/123456789/5655/%D0%9B%D0%B5%D1%89%D0%B8%D0%BD%D1%81%D0%BA%D0%B8%D0%B9.%20%D0%A1%D0%B0%D0%BC%D0%BE%D1%82%D1%83%D0%B3%D0%B8%D0%BD.%20%D0%A1%D0%BE%D0%B4%D0%B5%D1%80%D0%B6%D0%B0%D0%BD%D0%B8%D0%B5.pdf?sequence=1