Published December 17, 2021 | Version v1
Journal article Open

Use of Streptomyces species as a Biological Agent Against Plant ‎Pathogens

  • 1. Department of Biology, Faculty of Science, Hacettepe University, Ankara, Turkey.

Description

Abstract

Agricultural activities make significant contributions to the national economies around the world. Factors such as rapid population growth and unplanned urbanization cause a decrease in agricultural lands and agricultural crop production over the years with the effect of abiotic and biotic factors. Many studies have been carried out to eliminate factors that reduce crop productivity. Fungal pathogens, one of the leading biotic factors, cause plant diseases and reduce the production efficiency of crops. This study aimed to isolate Streptomyces genus bacteria, which can be used as a biological agent against the wheat pathogen Fusarium culmorum, and to evaluate their antifungal activities. We found that eight of the 25 Streptomyces isolates, which were isolated from soil using the starch-casein agar medium and identified basis on morphological characteristics (colony appearance and microscopic examination results), inhibited the growth of F. culmorum on the Mueller-Hinton agar and that Streptomyces species could be used as a ‎biological agent against this ‎pathogen. We consider that eight Streptomyces isolates having different degrees of antifungal activity is promising for more permanent, economical and efficient solutions against F. culmorum, which is one of the fungi that reduces agricultural economic yield in Turkey. This study can also guide further research that will evaluate the potential use secondary metabolites of Streptomyces bacteria with antifungal ‎properties for biocontrol or promotion of plant growth in different forms of ‎microbial fertilizers‎‎‎‎‎.

Özet

Tarımsal faaliyetler dünya genelinde ülke ekonomilerine önemli katkılar sağlamaktadır. Hızlı nüfus artışı ve plansız kentleşme gibi unsurlar, abiyotik ve biyotik faktörlerin de etkisiyle yıllar içerisinde tarım arazilerinin ve tarımsal ürün üretiminin azalmasına neden olmaktadır. ‎Mahsul verimliliğini düşüren etkenleri ‎ ortadan kaldırmak için çok sayıda çalışma gerçekleştirilmiştir. Biyotik faktörlerin başında gelen ‎fungal patojenler sebep oldukları bitki hastalıkları sebebiyle mahsulün üretim verimliliğini düşürmektedir. Bu çalışmada buğday patojeni olan Fusarium culmorum’a karşı ‎biyolojik ajan olarak kullanılabilecek Streptomyces cinsi bakterilerin izole edilmesi ve antifungal etkinliklerinin değerlendirilmesi ‎hedeflenmiştir. Nişasta kazein agar (starch casein agar) besiyeri kullanarak topraktan izole ettiğimiz ve koloni görünümü ve mikroskobik inceleme sonuçları ile morfolojik özellikler temelinde tanımladığımız 25 Streptomyces izolatından sekizinin Mueller-Hinton agar ‎ üzerinde F. culmorum üremesini inhibe ettiğini ‎ve bu patojene karşı ‎biyolojik ajan olarak ‎kullanılabileceğini tespit ettik. Farklı derecelerde antifungal etki gösterdiğini saptadığımız bu sekiz Streptomyces izolatının Türkiye’de tarımsal ekonomik verimini düşüren funguslardan birisi olan F. culmorum’a karşı daha kalıcı, ekonomik ve verimli çözümler üretmek için umut vaat ettiğini düşünüyoruz. Bu çalışma aynı zamanda, Streptomyces türü bakterilerin ‎sekonder metabolitlerinin biyokontrol amaçlı veya bitki büyümesini ‎‎teşvik edici farklı ‎mikrobiyal gübre formlarında kullanım ‎potansiyelini ‎değerlendirecek ileri çalışmalara da öncülük ‎edebilir‎.

Notes

Streptomyces türlerinin Bitki Patojenlerine Karşı Biyolojik Ajan Olarak ‎‎Kullanılması

Files

jmvi.2021.42.z.pdf

Files (723.2 kB)

Name Size Download all
md5:bef965260bff27f27a19974505b392a7
723.2 kB Preview Download

Additional details

References

  • ‎1. ‎Food and Agriculture Organization (FAO) of the United Nations, Rome, Italy. World food prices reach new ‎peak since July 2011. Available at: https://www.fao.org/newsroom/detail/world-food-prices-reach-new-‎peak-since-july-2011/en [Accessed December 4, 2021].‎
  • ‎2. Karaman M, Aktas H. Comparison of bread wheat (Triticum aestivum L.) lines with registered cultivars in ‎terms of yield and quality characteristics. Applied Ecology and Environmental Research 2020; 18(2): 3627-‎‎38.‎
  • ‎3. Türkiye İstatistik Kurumu (TÜİK), Ankara, Türkiye. Bitkisel Üretim 2. Tahmini, 2021. Available at: ‎https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-2.Tahmini-2021-37248 [Accessed December 4, ‎‎2021].‎
  • ‎4. Mesterházy Á, Oláh J, Popp J. Losses in the Grain Supply Chain: Causes and Solutions. Sustainability ‎‎2020; 12(6): 2342. ‎
  • ‎5. Tamang S, Kumar S, Das S, Mahapatra S. Role of abiotic factors on disease progression of Spot blotch of ‎Wheat. Indian Phytopathology 2021; 74: 263-9. ‎
  • ‎6. Ramegowda V, Da Costa MVJ, Harihar S, Karaba NN, Sreeman SM. Abiotic and biotic stress interactions in ‎plants: A cross-tolerance perspective (Chapter 17). In: Hossain MA, Liu F, Burritt DJ, Fujita M, Huang B ‎‎(eds), Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants (1st edition). 2020, Elsevier, ‎Academic Press, Cambridge, Massachusetts. pp:‎267-302‎.‎
  • ‎7. Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome: significance of plant beneficial, plant ‎pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 2013; 37(5): 634-63. ‎
  • ‎8. Köycü ND. Effect on Fusarium culmorum of fungicides used in Wheat seed. Proceedings of the ‎International Congress on Engineering and Life Science, Kastamonu, Turkey. Proceeding Book, 26-29 April ‎‎2018. pp:593-601.‎
  • ‎9. Yeşil S, Boyraz N. Bitki patojeni funguslarda fungusit dayanıklığı. Selçuk Tarım ve Gıda Bilim Derg 2010; ‎‎24(3): 101-8.‎
  • ‎10. Ölmez F, Tunalı B. Güneydoğu Anadolu Bölgesi'nde kök ve kök boğazı çürüklüğü belirtileri gösteren ‎buğday ‎‎örneklerinden izole edilen Fusarium türleri. Bitki Koruma Bülteni 2019; 59(3): 31-7. ‎
  • ‎11. Morgavi DP, Riley RT. Fusarium and their toxins: Mycology, occurrence, toxicity, control and economic ‎‎impact. ‎Anim Feed Sci Technol 2007; 137: 199-200. ‎
  • ‎12. ‎Wagacha JM, Muthomi JW. Fusarium culmorum: Infection process, mechanisms of mycotoxin production ‎and ‎‎their role in pathogenesis in wheat. Crop Prot 2007; 26(7): 877-85. ‎
  • ‎13. Schmidt R, Durling MB, de Jager V, Menezes RC, Nordkvist E, Svatoš A, et al. Deciphering the genome ‎and secondary metabolome of the plant pathogen Fusarium culmorum. FEMS Microbiol Ecol 2018; 94(6): 1-‎‎12. ‎
  • ‎14. Chandra NS, Wulff EG, Udayashankar AC, Nandini BP, Niranjana SR, Mortensen CN, et al. Prospects of ‎molecular markers in Fusarium species diversity. Appl Microbiol Biotechnol 2011; 90(5): 1625-39.‎
  • ‎15. Ossowicki A, Tracanna V, Petrus MLC, van Wezel G, Raaijmakers JM, Medema MH, et al. Microbial and ‎volatile profiling of soils suppressive to Fusarium culmorum of wheat. Proc Biol Sci 2020; 287(1921): ‎‎20192527. ‎
  • ‎16. Zümrüt IM, Develi ES, Sefer Ö, Yörük E. Tahıl Patojeni Fusarium culmorum'da Genetik Tiplendirme ‎Yaklaşımları. Elektronik Mikrobiyoloji Dergisi TR 2016; 14(2): 1-16.‎
  • ‎17. Spanu F, Scherm B, Camboni I, Balmas V, Pani G, Oufensou S, et al. FcRav2, a gene with a ROGDI ‎domain involved in Fusarium head blight and crown rot on durum wheat caused by Fusarium culmorum. Mol ‎Plant Pathol 2018; 19(3): 677-88. ‎
  • ‎18. Mielniczuk E, Skwaryło-Bednarz B.‎ Fusarium head blight, mycotoxins and strategies for their reduction. ‎Agronomy 2020; 10(4): 509. ‎
  • ‎19. Bocianowski J, Szulc P, Waśkiewicz A, Cyplik A. The Effect of Agrotechnical Factors on Fusarium ‎Mycotoxins Level in Maize. Agriculture 2020; 10(11): 528. ‎
  • ‎20. Witaszak N, Waśkiewicz A, Bocianowski J, Stępień Ł. Contamination of Pet Food with Mycobiota and ‎Fusarium Mycotoxins-Focus on Dogs and Cats. Toxins (Basel) 2020; 12(2): 130. ‎
  • ‎21. Sun S, Hoy MJ, Heitman J. Fungal pathogens. Curr Biol 2020; 30(19): R1163-R1169.‎
  • ‎22. Yu Z, Han C, Yu B, Zhao J, Yan Y, Huang S, et al. Taxonomic Characterization, and Secondary Metabolite ‎Analysis of Streptomyces triticiradicis sp. nov.: A Novel Actinomycete with Antifungal Activity. ‎Microorganisms 2020; 8(1): 77.‎
  • ‎23. Sharma N, Khanna K, Manhas RK, Bhardwaj R, Ohri P, Alkahtani J, et al. Insights into the Role of ‎Streptomyces hydrogenans as the Plant Growth Promoter, Photosynthetic Pigment Enhancer and Biocontrol ‎Agent against Meloidogyne incognita in Solanum lycopersicum Seedlings. Plants 2020; 9(9): 1109. ‎
  • ‎24. Sharma M, Manhas RK. Purification and characterization of salvianolic acid B from Streptomyces sp. M4 ‎possessing antifungal activity against fungal phytopathogens. Microbiol Res 2020; 237: 126478. ‎
  • ‎25. Tamreihao K, Ningthoujam DS, Nimaichand S, Singh ES, Reena P, Singh SH, et al. Biocontrol and plant ‎growth promoting activities of a Streptomyces corchorusii strain UCR3-16 and preparation of powder ‎formulation for application as biofertilizer agents for rice plant. Microbiol Res 2016; 192: 260-70. ‎
  • ‎26. Chevrette MG, Carlson CM, Ortega HE, Thomas C, Ananiev GE, Barns KJ, et al. The antimicrobial ‎potential of Streptomyces from insect microbiomes. Nat Commun 2019; 10(1): 516. ‎
  • ‎27. Evangelista-Martínez Z, Contreras-Leal EA, Corona-Pedraza LF, Gastélum-Martínez E. Biocontrol ‎potential of Streptomyces sp. CACIS-1.5CA against phytopathogenic fungi causing postharvest fruit diseases. ‎Egypt J Biol Pest Control 2020; 30: 117. ‎
  • ‎28. Vu HT, Nguyen DT, Nguyen HQ, Chu HH, Chu SK, Chau MV, et al. Antimicrobial and Cytotoxic Properties ‎of Bioactive Metabolites Produced by Streptomyces cavourensis YBQ59 Isolated from Cinnamomum cassia ‎Prels in Yen Bai Province of Vietnam. Curr Microbiol 2018; 75(10): 1247-55. ‎
  • ‎29. Kämpfer P, Glaeser SP, Parkes L, van Keulen G, Dyson P. The Family Streptomycetaceae‎. In: Rosenberg ‎E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds), The Prokaryotes. 2014, Springer, Berlin, ‎Heidelberg. pp:889-1010. ‎
  • ‎30. Hopwood DA. Highlights of Streptomyces genetics. Heredity (Edinb) 2019; 123(1): 23-32.‎
  • ‎31. Olanrewaju OS, Babalola OO. Streptomyces: implications and interactions in plant growth promotion. ‎Appl Microbiol Biotechnol 2019; 103(3): 1179-88. ‎
  • ‎32. Tran TN, Doan CT, Nguyen VB, Nguyen AD. The isolation of chitinase from Streptomyces ‎thermocarboxydus and its application in the preparation of chitin oligomers. Res Chem Intermed 2019; 45: ‎‎727-42. ‎
  • ‎33. Pagmadulam B, Tserendulam D, Rentsenkhand T, Igarashi M, Sawa R, Nihei CI, et al. Isolation and ‎characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils. Parasitol ‎Int 2020; 74: 101961. ‎
  • ‎34. Vurukonda SSKP, Giovanardi D, Stefani E. Plant Growth Promoting and Biocontrol Activity of ‎Streptomyces spp. as Endophytes. Int J Mol Sci 2018; 19(4): 952. ‎
  • ‎35. BSSN HB, Muvva V, Munaganti RK, Naragani K, Konda S, Dorigondla KR. Production of antimicrobial ‎metabolites by Streptomyces lavendulocolor VHB-9 isolated from granite mines. Braz Arch Biol Technol ‎‎2017; 60: 1-13. ‎
  • ‎36. Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M. Streptomyces Strains Induce Resistance to Fusarium ‎oxysporum f. sp. lycopersici Race 3 in Tomato Through Different Molecular Mechanisms. Front Microbiol ‎‎2019; 10: 1505.‎
  • ‎37. Bubici G. Streptomyces spp. as biocontrol agents against Fusarium species. CAB Rev Perspect Agric Vet ‎Sci ‎‎Nutr Nat Resour 2018; 13: 1-15. ‎
  • ‎38. Wei Y, Zhao Y, Zhou D, Qi D, Li K, Tang W, et al. A Newly Isolated Streptomyces sp. YYS-7 With a ‎Broad-Spectrum Antifungal Activity Improves the Banana Plant Resistance to Fusarium oxysporum f. sp. ‎cubense Tropical Race 4. Front Microbiol 2020; 11: 1712. ‎
  • ‎39. Colombo EM, Kunova A, Pizzatti C, Saracchi M, Cortesi P, Pasquali M. Selection of an Endophytic ‎Streptomyces sp. Strain DEF09 From Wheat Roots as a Biocontrol Agent Against Fusarium graminearum. ‎Front Microbiol 2019; 10: 2356. ‎
  • ‎40. Winter M, Samuels PL, Otto-Hanson LK, Dill-Macky R, Kinkel LL. ‎ Biological Control of Fusarium Crown ‎and Root Rot of Wheat by Streptomyces Isolates – It's Complicated. Phytobiomes J 2019; 3(1): 52-60‎.‎
  • ‎41. Ji CH, Kim H, Kang HS. Synthetic Inducible Regulatory Systems Optimized for the Modulation of ‎Secondary Metabolite Production in Streptomyces. ACS Synth Biol 2019; 8(3): 577-86. ‎