BIRAFFE2: The 2nd Study in Bio-Reactions and Faces for Emotion-based Personalization for AI Systems
- 1. Jagiellonian University
Contributors
Data collectors:
- 1. Jagiellonian University
- 2. AGH University of Science and Technology
Description
This is our 2nd Study in Bio-Reactions and Faces for Emotion-based Personalization for AI Systems (BIRAFFE2). It is a dataset consisting of electrocardiogram (ECG), galvanic skin response (GSR), changes in facial expression signals and hand movements (represented by gamepad's accelerometer and gyroscope) recorded during affect elicitation by means of audio-visual stimuli (from IADS and IAPS databases) and our proof-of-concept three-level emotion evoking game. All the signals were captured using portable and low-cost equipment: BITalino (r)evolution kit for ECG and GSR and Creative Live! web camera for face photos (further analyzed by MS Face API).
Besides the signals, the dataset consists also of participants' self-assessment of their affective state after each stimuli (in the valence and arousal dimensions), "Big Five" personality traits assessment (using NEO-FFI inventory), and game involvement-related metrics (using GEQ questionnaire).
In 1.1.0 version, RAW questionnaire data was included. The licence was changed from CC BY-NC-ND 4.0 to CC BY 4.0.
For detailed description see BIRAFFE2 Data Descriptor in Nature Scientific Data.
For preview of the files before downloading the whole dataset see sample-SUB211-[...] files.
All documents and papers that report on research that uses the BIRAFFE dataset should acknowledge this by citing the paper:
Kutt, K., Drążyk, D., Żuchowska, L., Szelążek, M., Bobek, S., & Nalepa, G. J. (2022). BIRAFFE2, a multimodal dataset for emotion-based personalization in rich affective game environments. Scientific Data, 9, 274. https://doi.org/10.1038/s41597-022-01402-6
Notes
Files
BIRAFFE2-arxiv-HAIW2020-paper.pdf
Files
(19.6 GB)
Name | Size | Download all |
---|---|---|
md5:13755817dbae03ae786142a7e7556409
|
902.6 kB | Preview Download |
md5:a02778d948e025b624c3824a54dbe362
|
5.4 GB | Preview Download |
md5:dfac2cda35a64a83f207c91556ddd79c
|
735.9 MB | Preview Download |
md5:12831fe872b2842d8a19b2c8f1eb4d9a
|
56.0 MB | Preview Download |
md5:d17a2c7c590ebd00560e533bbbcac8cf
|
1.3 kB | Preview Download |
md5:78abe7f2da8e2c5a74231297936b2b9d
|
7.9 kB | Preview Download |
md5:5e58c03fe1f8dc700361c70b64a368b5
|
7.9 kB | Preview Download |
md5:b1c64b2762480afd8a4019082c530cfa
|
7.9 kB | Preview Download |
md5:df0e23ce59775086b72cba22aa82fb19
|
13.6 kB | Preview Download |
md5:788cd8cf9515b112cfdbd9bf813d617a
|
27.3 kB | Preview Download |
md5:4f4db2fe3fdcfac399483d8792efab57
|
94.5 MB | Preview Download |
md5:22422a894ae727af4352a5718dbf7778
|
4.8 MB | Preview Download |
md5:b8ef02704681476180d66113edd71f28
|
35.9 MB | Preview Download |
md5:797602d3c9d701330f1a22b158726163
|
12.9 GB | Preview Download |
md5:d037b8006b9d9a58a1c7a2474b7cacd3
|
420 Bytes | Download |
md5:5cd9708454848ffded1be2ffed127d3f
|
186.0 MB | Preview Download |
md5:c21873bb6ee8ad7b7e59cfa8fa91630d
|
3.6 MB | Preview Download |
md5:08f909bf1f19a0f92b28a931d0c67f19
|
375.9 kB | Preview Download |
md5:90a0e76b94a8c0ca72912de2a1a490ca
|
36.7 MB | Preview Download |
md5:64daeb211460bd83b972afd199cedbfd
|
1.5 MB | Download |
md5:a769555e35ed9407ae312bea8271ef58
|
11.0 MB | Download |
md5:8e192a13ac861b3c53a038f776c4f23f
|
2.0 MB | Download |
md5:ca4246761cbde1588898c11e069d3c43
|
1.0 MB | Download |
md5:e74f1b90fd696fda512b504c15e85509
|
236.8 kB | Download |
md5:e3478019080cb515bd413c436abe8480
|
10.5 kB | Preview Download |
md5:143bc41d8e11075cd81b4b0af4758e34
|
142.8 MB | Download |
Additional details
Related works
- Continues
- Dataset: 10.5281/zenodo.3442143 (DOI)
- Is documented by
- https://afcai.re/pub:biraffe (URL)
- Journal article: 10.1038/s41597-022-01402-6 (DOI)
References
- Kutt, K., Drążyk, D., Żuchowska, L., Szelążek, M., Bobek, S., & Nalepa, G. J. (2022). BIRAFFE2, a multimodal dataset for emotion-based personalization in rich affective game environments. Scientific Data, 9, 274. https://doi.org/10.1038/s41597-022-01402-6
- Kutt, K., Żuchowska, L., Bobek, S., & Nalepa, G. J. (2021). People in the Context - an Analysis of Game-based Experimental Protocol. In J. Cassens, R. Wegener, & A. Kofod-Petersen (Eds.), Twelfth International Workshop Modelling and Reasoning in Context (MRC) @IJCAI 2021 (pp. 46–50). CEUR-WS.org. http://ceur-ws.org/Vol-2995/