Published December 2, 2021 | Version v1
Presentation Open

Transport, Bioaccumulation and Impact of Per- and Polyfluoroalkyl Substances (PFASs) in Birds from South-east Australia

  • 1. University of Melbourne
  • 1. University of Melbourne

Description

This presentation is the culmination of over three years of PhD research into the transport, fate, and impact of per- and polyfluoroalkyl substances (PFASs) to Australian wildlife - particularly birds from the south-east of the country.  The story of PFASs in Australia has a relatively short, but complicated history of emission, regulation, and contamination and remediation throughout the country. The study of avian species presents a unique and important perspective to the story of PFASs, as birds occupy many trophic levels in the environment and can be particularly sensitive to organohalogen compound exposure – making them important sentinels for environmental contamination. Through the application of leading-edge analytical chemistry techniques, the mobility of PFASs in the environment can be mapped to great accuracy and precision. When such incomprehensibly small amounts of PFASs can lead to adverse effects in birds from laboratory and field-based studies, the continued biomonitoring and toxicological research from around the world provides a rich understanding that we can build models of risk and mitigation. Drew will share a few examples of the sources and occurrence of PFASs in the Australian environment, and then how these compounds are transported throughout the food web. Finally, we can use this new information to assess the potential impacts of PFASs to avian wildlife in Australia by comparing it to current toxicological studies and identify gaps in the literature that need to be addressed in the future.

Watch the presentation here: https://youtu.be/2k-jrdUMbdw

Files

Szabo_Completion-Seminar.pdf

Files (16.7 MB)

Name Size Download all
md5:4822cef0556e3dfed788f6a2bc2d9144
16.7 MB Preview Download

Additional details

References

  • Dewitt, J.C. (2015) Toxicological effects of perfluoroalkyl and polyfluoroalkyl substances. (Molecular and Integrative Toxicology) Humana Press, Cham. 9783319155173 https://doi.org/10.1007/978-3-319-15518-0
  • Munoz, G., Giraudel, J.-L., Botta, F., Lestremau, F., Dévier, M.-H., Budzinski, H. & Labadie, P. 2015. Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: A French nationwide survey. Science of the Total Environment, 517, 48-56. http://dx.doi.org/10.1016/j.scitotenv.2015.02.043
  • Barzen-Hanson, K.A., Roberts, S.C., Choyke, S., Oetjen, K., Mcalees, A., Riddell, N., Mccrindle, R., Ferguson, P.L., Higgins, C.P. & Field, J.A. 2017. Discovery of 40 classes of per- and polyfluoroalkyl substances in historical aqueous film-forming foams (AFFFs) and AFFF-impacted groundwater. Environmental science & technology, 51, 2047-2057. https://doi.org/10.1021/acs.est.6b05843
  • Sima, M.W. & Jaffé, P.R. 2021. A critical review of modeling Poly- and Perfluoroalkyl Substances (PFAS) in the soil-water environment. Science of the Total Environment, 757, 143793. https://doi.org/10.1016/j.scitotenv.2020.143793
  • Butt, C.M., Muir, D.C.G. & Mabury, S.A. 2014. Biotransformation pathways of fluorotelomer-based polyfluoroalkyl substances: A review. Environmental Toxicology and Chemistry, 33, 243-267. https://doi.org/10.1002/etc.2407
  • Mallory, M.L., Robinson, S.A., Hebert, C.E. & Forbes, M.R. 2010. Seabirds as indicators of aquatic ecosystem conditions: A case for gathering multiple proxies of seabird health. Marine Pollution Bulletin, 60, 7-12. https://doi.org/10.1016/j.marpolbul.2009.08.024
  • Braune, B.M., Outridge, P.M., Fisk, A.T., Muir, D.C.G., Helm, P.A., Hobbs, K., Hoekstra, P.F., Kuzyk, Z.A., Kwan, M., Letcher, R.J., Lockhart, W.L., Norstrom, R.J., Stern, G.A. & Stirling, I. 2005. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: An overview of spatial and temporal trends. Science of the Total Environment, 351-352, 4-56. https://doi.org/10.1016/j.scitotenv.2004.10.034
  • Frederiksen, M., Mavor, R.A. & Wanless, S. 2007. Seabirds as environmental indicators: the advantages of combining data sets. Marine Ecology Progress Series, 352, 205-211. https://doi.org/10.3354/meps07071
  • Thompson, P.M. & Ollason, J.C. 2001. Lagged effects of ocean climate change on fulmar population dynamics. Nature, 413, 417-420. https://doi.org/v10.1038/35096558
  • Alonso, H., Granadeiro, J.P., Paiva, V.H., Dias, A.S., Ramos, J.A. & Catry, P. 2012. Parent–offspring dietary segregation of Cory's shearwaters breeding in contrasting environments. Marine Biology, 159, 1197-1207. https://doi.org/10.1007/s00227-012-1900-2
  • Jarman, W.M., Hobson, K.A., Sydeman, W.J., Bacon, C.E. & Mclaren, E.B. 1996. Influence of Trophic Position and Feeding Location on Contaminant Levels in the Gulf of the Farallones Food Web Revealed by Stable Isotope Analysis. Environmental science & technology, 30, 654-660. 10.1021/es950392n
  • Fisk, A.T., Hobson, K.A. & Norstrom, R.J. 2001. Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the northwater polynya marine food web. Environmental science & technology, 35, 732-738. https://doi.org/10.1021/es001459w
  • Xu, J., Guo, C.-S., Zhang, Y. & Meng, W. 2014. Bioaccumulation and trophic transfer of perfluorinated compounds in a eutrophic freshwater food web. Environmental Pollution, 184, 254-261. https://doi.org/10.1016/j.envpol.2013.09.011
  • Tomy, G.T., Budakowski, W., Halldorson, T., Helm, P.A., Stern, G.A., Friesen, K., Pepper, K., Tittlemier, S.A. & Fisk, A.T. 2004. Fluorinated organic compounds in an eastern Arctic marine food web. Environmental science & technology, 38, 6475-6481. https://doi.org/10.1021/es049620g
  • Kelly, B.C., Ikonomou, M.G., Blair, J.D., Surridge, B., Hoover, D., Grace, R. & Gobas, F.a.P.C. 2009. Perfluoroalkyl contaminants in an Arctic marine food web: Trophic magnification and wildlife exposure. Environmental science & technology, 43, 4037-4043. https://doi.org/10.1021/es9003894
  • Haukås, M., Berger, U., Hop, H., Gulliksen, B. & Gabrielsen, G.W. 2007. Bioaccumulation of per- and polyfluorinated alkyl substances (PFAS) in selected species from the Barents Sea food web. Environmental Pollution, 148, 360-371. https://doi.org/10.1016/j.envpol.2006.09.021
  • Kannan, K., Tao, L., Sinclair, E., Pastva, S.D., Jude, D.J. & Giesy, J.P. 2005. Perfluorinated Compounds in Aquatic Organisms at Various Trophic Levels in a Great Lakes Food Chain. Archives of Environmental Contamination and Toxicology, 48, 559-566. https://doi.org/10.1007/s00244-004-0133-x
  • Groffen, T., Eens, M. & Bervoets, L. 2019. Do concentrations of perfluoroalkylated acids (PFAAs) in isopods reflect concentrations in soil and songbirds? A study using a distance gradient from a fluorochemical plant. Science of the Total Environment, 657, 111-123. https://doi.org/10.1016/j.scitotenv.2018.12.072
  • Remucal, C.K. 2019. Spatial and temporal variability of perfluoroalkyl substances in the Laurentian Great Lakes. Environmental Science: Processes & Impacts, 21, 1816-1834. https://doi.org/10.1039/C9EM00265K
  • Holmström, K.E., Johansson, A.-K., Bignert, A., Lindberg, P. & Berger, U. 2010. Temporal trends of perfluorinated surfactants in Swedish peregrine falcon eggs (Falco peregrinus), 1974−2007. Environmental science & technology, 44, 4083-4088. https://doi.org/10.1021/es100028f
  • Thompson, J., Roach, A., Eaglesham, G., Bartkow, M.E., Edge, K. & Mueller, J.F. 2011. Perfluorinated alkyl acids in water, sediment and wildlife from Sydney Harbour and surroundings. Marine Pollution Bulletin, 62, 2869-2875. https://doi.org/10.1016/j.marpolbul.2011.09.002
  • Tao, L., Kannan, K., Kajiwara, N., Costa, M.M., Fillmann, G., Takahashi, S. & Tanabe, S. 2006. Perfluorooctanesulfonate and related fluorochemicals in albatrosses, elephant seals, penguins, and polar skuas from the Southern Ocean. Environmental science & technology, 40, 7642-7648. https://doi.org/10.1021/es061513u
  • Coggan, T.L., Moodie, D., Kolobaric, A., Szabo, D., Shimeta, J., Crosbie, N.D., Lee, E., Fernandes, M. & Clarke, B.O. 2019. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon, 5, e02316. https://doi.org/10.1016/j.heliyon.2019.e02316
  • Gallen, C., Bignert, A., Taucare, G., O'brien, J., Braeunig, J., Reeks, T., Thompson, J. & Mueller, J.F. 2022. Temporal trends of perfluoroalkyl substances in an Australian wastewater treatment plant: A ten-year retrospective investigation. Science of the Total Environment, 804, 150211. https://doi.org/10.1016/j.scitotenv.2021.150211
  • De Silva, A.O., Spencer, C., Scott, B.F., Backus, S. & Muir, D.C.G. 2011. Detection of a Cyclic Perfluorinated Acid, Perfluoroethylcyclohexane Sulfonate, in the Great Lakes of North America. Environmental science & technology, 45, 8060-8066. https://doi.org/10.1021/es200135c
  • De Solla, S.R., De Silva, A.O. & Letcher, R.J. 2012. Highly elevated levels of perfluorooctane sulfonate and other perfluorinated acids found in biota and surface water downstream of an international airport, Hamilton, Ontario, Canada. Environment International, 39, 19-26. https://doi.org/10.1016/j.envint.2011.09.011
  • Houde, M., Giraudo, M., Douville, M., Bougas, B., Couture, P., De Silva, A.O., Spencer, C., Lair, S., Verreault, J., Bernatchez, L. & Gagnon, C. 2014. A multi-level biological approach to evaluate impacts of a major municipal effluent in wild St. Lawrence River yellow perch (Perca flavescens). Science of the Total Environment, 497-498, 307-318. https://doi.org/10.1016/j.scitotenv.2014.07.059
  • Wang, Y., Vestergren, R., Shi, Y., Cao, D., Xu, L., Cai, Y., Zhao, X. & Wu, F. 2016. Identification, Tissue Distribution, and Bioaccumulation Potential of Cyclic Perfluorinated Sulfonic Acids Isomers in an Airport Impacted Ecosystem. Environmental science & technology, 50, 10923-10932. https://doi.org/10.1021/acs.est.6b01980
  • Macinnis, J.J., French, K., Muir, D.C.G., Spencer, C., Criscitiello, A., De Silva, A.O. & Young, C.J. 2017. Emerging investigator series: a 14-year depositional ice record of perfluoroalkyl substances in the High Arctic. Environmental Science: Processes & Impacts, 19, 22-30. https://doi.org/10.1039/C6EM00593D
  • Lescord, G.L., Kidd, K.A., De Silva, A.O., Williamson, M., Spencer, C., Wang, X. & Muir, D.C.G. 2015. Perfluorinated and Polyfluorinated Compounds in Lake Food Webs from the Canadian High Arctic. Environmental science & technology, 49, 2694-2702. https://doi.org/10.1021/es5048649
  • Steffen, W., Richardson, K., Rockström, J., Cornell Sarah, E., Fetzer, I., Bennett Elena, M., Biggs, R., Carpenter Stephen, R., De Vries, W., De Wit Cynthia, A., Folke, C., Gerten, D., Heinke, J., Mace Georgina, M., Persson Linn, M., Ramanathan, V., Reyers, B. & Sörlin, S. 2015. Planetary boundaries: Guiding human development on a changing planet. Science, 347, 1259855. 10.1126/science.1259855
  • Szabo, D., Lavers, J.L., Shimeta, J., Green, M.P., Mulder, R.A. & Clarke, B.O. 2021. Correlations between Per- and Polyfluoroalkyl Substances and Body Morphometrics in Fledgling Shearwaters Impacted by Plastic Consumption from a Remote Pacific Island. Environmental Toxicology and Chemistry, 40, 799-810. https://doi.org/10.1002/etc.4924