Research of multi-response optimization of milling process of hardened S50C steel using minimum quantity lubrication of Vietnamese peanut oil
- 1. Hanoi University of Industry
Description
This study aims to build a regression model when surveying the milling process on S50C steel using Minimum Quantity Lubrication (MQL) of Vietnamese peanut oil-based on Response Surface Methodology. The paper analyses and evaluates the effect of cutting parameters, flow rates, and pressures in minimum quantity lubrication system on cutting force and surface roughness in the milling process of S50C carbon steel materials after heat treatment (reaching a hardness of 52 HRC). The Taguchi method, one of the most effective experimental planning methods nowadays, is used in this study. The statistical analysis software, namely Minitab 19, is utilized to build a regression model between parameters of the cutting process, flow rates and pressures of the minimum quantity lubrication system and the cutting force, surface roughness of the part when machining on a 5-axis CNC milling machine. Thereby analyzing and predicting the effect of cutting parameters and minimum quantity lubrication conditions on the surface roughness and cutting force during machining to determine the influence level them. In this work, the regression models of Ra and F were achieved by using the optimizer tool in Minitab 19. Moreover, the multi-response optimization problem was solved. The optimum cutting parameters and lubricating conditions are as follows: Cutting velocity Vc=190.909 m/min, feed rate fz=0.02 mm/tooth, axial depth of cut ap=0.1 and nozzle pressure P=5.596 MPa, flow rate Q=108.887 ml/h. The output parameters obtained from the above parameters are Ra=0.0586 and F=162.035 N, respectively. This result not only provides the foundation for future research but also contributes reference data for the machining process
Files
Research of multi-response optimization of milling process of hardened S50C steel using minimum quantity lubrication of Vietnamese peanut oil.pdf
Files
(1.4 MB)
Name | Size | Download all |
---|---|---|
md5:96c4b663847412493b6d8df008a3719c
|
1.4 MB | Preview Download |
Additional details
References
- Grzesik, W. (2008). Machining of Hard Materials. Machining, 97–126. doi: https://doi.org/10.1007/978-1-84800-213-5_4
- Astakhov, V. P. (2011). Machining of Hard Materials – Definitions and Industrial Applications. Machining of Hard Materials, 1–32. doi: https://doi.org/10.1007/978-1-84996-450-0_1
- Bashir, M. A., Mia, M., Dhar, N. R. (2015). Effect of Pulse Jet MQL in Surface Milling of Hardened Steel. Journal of Mechanical Engineering, 45 (2), 67–72. doi: https://doi.org/10.3329/jme.v45i2.28118
- Kang, M. C., Kim, K. H., Shin, S. H., Jang, S. H., Park, J. H., Kim, C. (2008). Effect of the minimum quantity lubrication in high-speed end-milling of AISI D2 cold-worked die steel (62 HRC) by coated carbide tools. Surface and Coatings Technology, 202 (22-23), 5621–5624. doi: https://doi.org/10.1016/j.surfcoat.2008.06.129
- Routara, B. C., Bandyopadhyay, A., Sahoo, P. (2008). Roughness modeling and optimization in CNC end milling using response surface method: effect of workpiece material variation. The International Journal of Advanced Manufacturing Technology, 40 (11-12), 1166–1180. doi: https://doi.org/10.1007/s00170-008-1440-6
- Benardos, P. G., Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 43 (8), 833–844. doi: https://doi.org/10.1016/s0890-6955(03)00059-2
- Mia, M., Bashir, M. A., Khan, M. A., Dhar, N. R. (2016). Optimization of MQL flow rate for minimum cutting force and surface roughness in end milling of hardened steel (HRC 40). The International Journal of Advanced Manufacturing Technology, 89 (1-4), 675–690. doi: https://doi.org/10.1007/s00170-016-9080-8
- Raza, M. H., Hafeez, F., Zhong, R. Y., Imran, A. (2020). Investigation of surface roughness in face milling processes. The International Journal of Advanced Manufacturing Technology, 111 (9-10), 2589–2599. doi: https://doi.org/10.1007/s00170-020-06188-8
- Naresh Babu, M., Anandan, V., Muthukrishnan, N., Santhanakumar, M. (2019). End milling of AISI 304 steel using Minimum Quantity Lubrication. Measurement, 138, 681–689. doi: https://doi.org/10.1016/j.measurement.2019.01.064
- Tien, D. H., Nguyen, N.-T., Do, D. T., Nguyen, V. C., Nguyen, V. Q., Luat, V. et al. (2020). Optimization of cutting parameters and cutter helix angle for Minimum Surface Roughness in Flat -end Milling of Al6061. Technology Reports of Kansai University, 62 (4), 1321–1331. Available at: https://www.kansaiuniversityreports.com/volume/TRKU/62/04/optimization-of-cutting-parameters-and-cutter-helix-angle-for-minimum-surface-roughness-in-flat-end-milling-of-al6061-5ed323d6f3108.pdf
- Mia, M. (2018). Mathematical modeling and optimization of MQL assisted end milling characteristics based on RSM and Taguchi method. Measurement, 121, 249–260. doi: https://doi.org/10.1016/j.measurement.2018.02.017
- Masmiati, N., Sarhan, A. A. D., Hassan, M. A. N., Hamdi, M. (2016). Optimization of cutting conditions for minimum residual stress, cutting force and surface roughness in end milling of S50C medium carbon steel. Measurement, 86, 253–265. doi: https://doi.org/10.1016/j.measurement.2016.02.049
- Hoang, D. T., Nguyen, N.-T., Tran, Q. D., Nguyen, T. V. (2019). Cutting Forces and Surface Roughness in Face-Milling of SKD61 Hard Steel. Strojniški Vestnik - Journal of Mechanical Engineering, 65 (6), 375–385. doi: https://doi.org/10.5545/sv-jme.2019.6057
- Tien, D. H., Duc, Q. T., Van, T. N., Nguyen, N.-T., Do Duc, T., Duy, T. N. (2021). Online monitoring and multi-objective optimisation of technological parameters in high-speed milling process. The International Journal of Advanced Manufacturing Technology, 112 (9-10), 2461–2483. doi: https://doi.org/10.1007/s00170-020-06444-x