Conference paper Open Access

Towards a Professional Gesture Recognition with RGB-D from Smartphone

Monivar, Pablo Vicente; Manitsaris, Sotiris; Glushkova, Alina

Abstract. The goal of this work is to build the basis for a smartphone application that provides functionalities for recording human motion data, train machine learning algorithms and recognize professional gestures. First, we take advantage of the new mobile phone cameras, either infrared or stereoscopic, to record RGB-D data. Then, a bottom-up pose estimation algorithm based on Deep Learning extracts the 2D human skeleton and exports the 3rd dimension using the depth. Finally, we use a gesture recognition engine, which is based on K-means and Hidden Markov Models (HMMs). The performance of the machine learning algorithm has been tested with professional gestures using a silk-weaving and a TV-assembly datasets.

Files (2.5 MB)
Name Size
ICVS_Paper VFinal.pdf
md5:f8e0f320f11ed9fd04d0f045a73d007a
2.5 MB Download
49
50
views
downloads
Views 49
Downloads 50
Data volume 126.7 MB
Unique views 40
Unique downloads 48

Share

Cite as