Journal article Open Access
Md Kamal Uddin; Amran Bhuiyan; Mahmudul Hasan
Person re-identification (Re-id) is one of the important tools of video surveillance systems, which aims to recognize an individual across the multiple disjoint sensors of a camera network. Despite the recent advances on RGB camera-based person re-identification methods under normal lighting conditions, Re-id researchers fail to take advantages of modern RGB-D sensor-based additional information (e.g. depth and skeleton information). When traditional RGB-based cameras fail to capture the video under poor illumination conditions, RGB-D sensor-based additional information can be advantageous to tackle these constraints. This work takes depth images and skeleton joint points as additional information along with RGB appearance cues and proposes a person re-identification method. We combine 4-channel RGB-D image features with skeleton information using score-level fusion strategy in dissimilarity space to increase re-identification accuracy. Moreover, our propose method overcomes the illumination problem because we use illumination invariant depth image and skeleton information. We carried out rigorous experiments on two publicly available RGBD-ID re-identification datasets and proved the use of combined features of 4-channel RGB-D images and skeleton information boost up the rank 1 recognition accuracy.
Name | Size | |
---|---|---|
L956610101221.pdf
md5:eeb0e7d9b9fb4a5088c0d4d74f371fef |
439.7 kB | Download |
Views | 59 |
Downloads | 21 |
Data volume | 9.2 MB |
Unique views | 48 |
Unique downloads | 20 |