Journal article Open Access

Integrated Neural Networks for Nonlinear Continuous-Time System Identification

Bojan Mavkov; Marco Forgione; Dario Piga

This paper introduces a novel neural network architecture, called Integrated Neural Network (INN), for direct identification of nonlinear continuous-time dynamical models in state-space representation. The proposed INN is used to approximate the continuous-time state map, and it consists of a feed-forward network followed by an integral block. The unknown parameters are estimated by minimizing a properly constructed dual-objective criterion. The effectiveness of the proposed methodology is assessed against the Cascaded Tanks
System benchmark.

Files (509.6 kB)
Name Size
LCSS2020.pdf
md5:b31af3adb5221a4b1aca499285c7e2c1
509.6 kB Download
29
18
views
downloads
Views 29
Downloads 18
Data volume 9.2 MB
Unique views 18
Unique downloads 17

Share

Cite as