Anomaly Detection in Human Behavior using Video Surveillance
- 1. Computer Science and Engineering, Ramaiah Institute of Technology, Bangalore, India.
Contributors
- 1. Publisher
Description
Conventional static surveillance has proved to be quite ineffective as the huge number of cameras to keep an eye on most often outstrips the monitor’s ability to do so. Furthermore, the amount of focus needed to constantly monitor the surveillance video cameras is often overbearing. The review paper focuses on solving the problem of anomaly detection in video sequence through semi-supervised techniques. Each video is defined as sequence of frames. The model is trained with goal to minimize the reconstruction error which later on is used to detect anomaly in the test sample videos. The model was trained and tested on most commonly used benchmarking dataset Avenue dataset. Experiment results confirm that the model detects anomaly in a video with a reasonably good accuracy in presence of some noise in dataset.
Files
B3133129219.pdf
Files
(747.1 kB)
Name | Size | Download all |
---|---|---|
md5:2dc346c851cc3e1d79ae96759ae8d0db
|
747.1 kB | Preview Download |
Additional details
Related works
- Is cited by
- Journal article: 2249-8958 (ISSN)
Subjects
- ISSN
- 2249-8958
- Retrieval Number
- B3133129219/2019©BEIESP