Journal article Open Access

Green Supply Chain Management Optimization Based On NSGA-II Method

S. Sundar; C. Dhanasekaran; S. Sivaganesan

Sponsor(s)
Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP)

Green Supply Chain Management (GSCM) is the adopted by many companies due to the government policies of various countries. The optimization technique can be applied in the GSCM to increase the profit of the company. In this research, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) technique is applied for the optimization of GSCM to increase the performance. The NSGA-II method has the advantage of choosing the solution closer to the pareto-solution and uses the elitist technique to preserve the best solution in the next generation. Mathematical model of the GSCM system is established and data is provided as input to the mathematical mode. Data is generated in three types, small scale, medium scale and large scale. The proposed NSGA-II method has high performance in the optimization technique compared to existing method. The proposed NSGA-II method has the Number of Pareto Solution (NPS) metrics of 17 for large scale data, while existing method has 14.

Files (660.8 kB)
Name Size
B3092129219.pdf
md5:eb31c0326b553f9abaa79814ee89698c
660.8 kB Download
12
11
views
downloads
Views 12
Downloads 11
Data volume 7.3 MB
Unique views 12
Unique downloads 11

Share

Cite as