Published October 21, 2021 | Version v1
Dataset Open

surface water datasets

  • 1. China Institute of Water Resources and Hydropower Research
  • 2. Sun Yat-sen University

Description

Satellite remote sensing provides an efficient pathway to map terrestrialinland surface water extent across different spatial and temporal scales. However, how to monitor the surface water distribution and its spatiotemporal variability via combining optical and radar remote sensing datasets still faces substantial challenges. In this study, we propose a Seamless Surface Water Mapping Framework (SSWMF) which synergizes both optical (MODIS, Landsat 8, Sentinel-2) and microwaveSAR (Sentinel-1) imageries. The validity of SSWMF was first proved over the middle and lower reaches of the Yangtze River (MLYR) of China with abundant lake resources, showing an overall accuracy of 92%. The90.72%, and the results indicate that SSWMF can provide surface water map with higher spatial and temporal continuity compared to the Joint Research Centre Global Surface Water dataset. Multi-source validation showed that the SSWMF-derived surface water maps can well capture the temporal fluctuation and spatial heterogeneity of water resources over China during the study period., with an overall accuracy of 92.39%. Overall, theour results suggest that the proposed water mapping framework is promising and is readily applicable to large-scale water resource management and drought/flood monitoring at large scale.

1.Yang, Y.M., Huang, S.F., Qiu, J.X., Liu, C.J., & Jiang, W. (2022). A surface water mapping framework combining optical and radar remote sensing and its application in China. Geocarto International, DOI: 10.1080/10106049.2022.2129836

Files

ChinaWater12018-1-1.tif

Files (9.5 GB)

Name Size Download all
md5:65c56ba1af7b793439678cbf50c61c5d
264.2 MB Preview Download
md5:c23c5390cba9e94c574c69f5247d9048
265.2 MB Preview Download
md5:dcecd56b903e563abc90273fd4a9c07a
271.9 MB Preview Download
md5:9323de47be9e555b379264d732c8a0e1
270.6 MB Preview Download
md5:591777eff69d0ebc633ff732fee663dd
256.2 MB Preview Download
md5:e994711d4c0a72c47568bd5064b8c504
256.8 MB Preview Download
md5:5c990a63d22eae3def5a640cd9cba258
256.1 MB Preview Download
md5:900967bd0ff42739e428b8f31d5fc2dc
255.5 MB Preview Download
md5:afa2e2ef63044f007d1b0676bb1e4a9d
260.7 MB Preview Download
md5:feb96eeeba6c18a4a9c6486b57ef0f87
266.1 MB Preview Download
md5:e8b49d1cc3df052892c67eddf8d946ed
269.9 MB Preview Download
md5:b87281b1b8c69db23c1ffca165e56557
265.6 MB Preview Download
md5:88a1c6255fcdde710d53d91f3250ffdf
266.5 MB Preview Download
md5:4cfba0da0272f62b74dddd0e3198111a
266.5 MB Preview Download
md5:80bd9c9ee2c19b17c000ff2feecb85dc
269.6 MB Preview Download
md5:372d433defc3dcf7cc542a40d9b03340
261.6 MB Preview Download
md5:9e7b3933f620815bb101eaeefbf3a5d6
270.6 MB Preview Download
md5:9ac1443d7502f801bd4178c5b30001e3
262.6 MB Preview Download
md5:5ee3be3df87ad2022acdb754c6100e07
259.3 MB Preview Download
md5:48f9737f7fc455cb90a23651b0fb458f
259.5 MB Preview Download
md5:52d35faf5bc392b6bb62c73712425d9e
262.3 MB Preview Download
md5:4903f1c36754556911f8cd80dd7f8047
267.9 MB Preview Download
md5:5626118024dd8785af8f479a12c81fa8
268.3 MB Preview Download
md5:71a2252dbc669e66a74b18004985f4e8
267.6 MB Preview Download
md5:fe304195ec1ba23c3833233af5f42266
252.2 MB Preview Download
md5:826ddcf0fb58fb774fb39bf9259eb827
268.2 MB Preview Download
md5:6dc9fc4f52e80c4cc350f354ccb0f6d6
270.6 MB Preview Download
md5:5a67939024b7ae5f7a2e51a11d83015c
271.0 MB Preview Download
md5:d298b14da1efe9ca1c89c1fde02e929a
249.8 MB Preview Download
md5:f847bc7576f4ffccfb8cfebe86762a4a
257.7 MB Preview Download
md5:dc0641f960deab766badedf47b206c53
261.2 MB Preview Download
md5:6ad68c1495fdb679e9e40297d7f2ae15
259.8 MB Preview Download
md5:1638781278c73121b2bb2c2cd352146a
263.9 MB Preview Download
md5:08433d46ba74929849027f63ddfe85a9
266.8 MB Preview Download
md5:9550f1377f3f1a53791dc62352d76ac9
267.8 MB Preview Download
md5:f73587c301c04e2a35a5cf59e5f7eb9d
268.9 MB Preview Download