Anomaly-Based Intrusion Detection System using Supervised Learning Algorithm Artificial Neural Network and Ant Colony Optimization with Feature Selection
Creators
- 1. Assistant professor, Vaish College of Engineering, Rohtak.
- 2. Assistant Professor, Department of Computer Science and Applications, Kurukshetra University Kurukshetra
Contributors
- 1. Publisher
Description
In the advent of the cyber world, all know that cyber security is randomly used research area for researchers to secure host, network, and data because of increasingly complex attacks. In the advent of anomaly-based intrusion detection system, various techniques are applied to detect intrusion on system or network. This approach attains an extreme detection rate and accuracy but there may be overhead acquired to build and training them. The objective of this paper is to detect the intrusion of a system by proposing a Data mining technique which is based on supervised learning algorithm for training dataset. Artificial neural network (ANN) and Ant Colony Optimization (ACO) with feature selection are the basics of the proposed scheme. ACO work on a population-based algorithm and is motivated by the pheromone trail laying behavior of real ants, in which NSL-KDD Cup99 Dataset is used. Empirical Results clearly explain that the proposed system can attain an overall detection rate of 88% and time complexity of 0.343 sec, which is satisfactory when compared to other anomaly-based schemes.
Files
C5683029320.pdf
Files
(486.2 kB)
Name | Size | Download all |
---|---|---|
md5:4a3671a7d1d2eed44f0aa229183a1037
|
486.2 kB | Preview Download |
Additional details
Related works
- Is cited by
- Journal article: 2249-8958 (ISSN)
Subjects
- ISSN
- 2249-8958
- Retrieval Number
- C5683029320/2020©BEIESP