Published April 24, 2017
| Version v1
Dataset
Open
Dataset for: Research data management in academic institutions: a scoping review
Creators
- 1. Gerstein Science Information Centre, University of Toronto, Toronto, Ontario, Canada
- 2. Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
- 3. Gibson D. Lewis Health Science Library, UNT Health Science Center, Fort Worth, Texas, USA
- 4. St. Michael's Hospital Library, St. Michael's Hospital, Toronto, Ontario, Canada
- 5. Faculty of Information, University of Toronto, Toronto, Ontario, Canada
- 6. Engineering & Computer Science Library, University of Toronto, Toronto, Ontario, Canada
- 7. Map and Data Library, University of Toronto, Toronto, Ontario, Canada
- 8. MacOdrum Library, Carleton University, Ottawa, Ontario, Canada
Description
Overview
This dataset contains the raw data for the manuscript:
Perrier L, Blondal E, Ayala AP, Dearborn D, Kenny T, Lightfoot D, Reka R, Thuna M, Trimble L, MacDonald H. Research data management in academic institutions: A scoping review. PLOS One. 2017 May 23;12(5):e0178261. doi: 10.1371/journal.pone.0178261.
Full-text available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178261
Data and Documentation Files
Five files make up the dataset:
- Data Dictionary: RDMScopingReview_DataDictionary.pdf
- Data Abstraction Sheet: RDMScopingReview_StudyCharacteristics.csv
- Data Abstraction Sheet: RDMScopingReview_Setting.csv
- Data Abstraction Sheet: RDMScopingReview_DataCollectionTools.csv
- Data Abstraction Sheet: RDMScopingReview_Outcomes.csv
Contact: Laure Perrier: orcid.org/0000-0001-9941-7129
Files
RDMScopingReview_DataCollectionTools.csv
Files
(1.1 MB)
Name | Size | Download all |
---|---|---|
md5:faa693f9c3d9c2efa4932e9b0de5ab0a
|
22.6 kB | Preview Download |
md5:597e994f15203092b82b35e33204a1ab
|
370.3 kB | Preview Download |
md5:82e79737776ad2a782a04852d1ba0f04
|
488.3 kB | Preview Download |
md5:353811804d8c9bf45fd8c28f8275e739
|
148.7 kB | Preview Download |
md5:d370fa3465bfee11fa8cf4885d3e54eb
|
72.5 kB | Preview Download |