Published February 29, 2020 | Version v1
Journal article Open

Control of 3-Axis Satellite Reaction Wheel using PID Control Optimized Genetic Algorithms

  • 1. Physics of Engineering , Universitas Nasional, Jakarta, Indonesia
  • 1. Publisher

Description

Satellite Attitude Determination and Control System (ADCS) uses an active actuator with a Reaction wheel. This study uses PID and genetic algorithms to control the Reaction wheel. The initial population was 200, and the crossover rate was 0.8, the mutation constant was 0.01 with a stop generation criteria of 50 generations. Reaction Wheel Control in a closed ring with optimized PID control The Genetic Algorithm has transient response characteristics that are 1 seconds rise time, 9 seconds set time, 33.2% overshoot with an ITAE performance index of 481,9479. Use the Matlab program to conduct a Smart Nanosatellite Attitude Propagator (SNAP) simulator to create a 3-axis reaction wheel model as its actuator. The satellite is the object of control, simulating the satellite conditions in a tumbling state having the initial angular velocity [0.5 0.5 0.5] ° / second then stumbling which makes the satellite angular velocity to [0 0 0] ° / second. Roll and yaw axes have a significant enough error that is1 rad / s and -1 rad / s while the pitch axis has a small error that is 1.5 10−3 / and −1.5 10−3 /s.

Files

C5344029320 (1).pdf

Files (1.2 MB)

Name Size Download all
md5:2e916c5b41f7ac2aa28a893d37a407b4
1.2 MB Preview Download

Additional details

Related works

Is cited by
Journal article: 2249-8958 (ISSN)

Subjects

ISSN
2249-8958
Retrieval Number
C5344029320/2020©BEIESP