Dataset Open Access
Roet, Sander;
Daub, Christopher D;
Riccardi, Enrico
This is the data and assosiated in-house code for the paper:
Chemistrees: Data-Driven Identification of Reaction Pathways via Machine Learning
Sander Roet, Christopher D. Daub, and Enrico Riccardi
Journal of Chemical Theory and Computation 2021 17 (10), 6193-6202
DOI: 10.1021/acs.jctc.1c00458
Name | Size | |
---|---|---|
Chemistrees.zip
md5:037a9e5349e4c3bad3e429fd78885129 |
12.8 GB | Download |
All versions | This version | |
---|---|---|
Views | 67 | 67 |
Downloads | 7 | 7 |
Data volume | 89.5 GB | 89.5 GB |
Unique views | 60 | 60 |
Unique downloads | 7 | 7 |