Published August 29, 2016 | Version v1
Journal article Open

Anomalous scaling and breakdown of conventional density functional theory methods for the description of Mott phenomena and stretched bonds

  • 1. SC-CNR and Dipartimento di Fisica, Universita di Roma "La Sapienza
  • 2. CNR-IOM, Istituto Officina dei Materiali,
  • 3. Center S3, CNR Institute of Nanoscience
  • 4. Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling

Description

Density functional theory provides the most widespread framework for the realistic description of the electronic structure of solids, but the description of strongly correlated systems has remained so far elusive. We consider a particular limit of electrons and ions in which a one-band description becomes exact all the way from the weakly correlated metallic regime to the strongly correlated Mott-Hubbard regime. We provide a necessary condition a density functional should fulfill to describe Mott-Hubbard behavior in this one-band limit and show that it is not satisfied by standard and widely used local, semilocal, and hybrid functionals. We illustrate the condition in the case of few-atom systems and provide an analytic approximation to the exact exchange-correlation potential based on a variational wave function which shows explicitly the correct behavior, combining in a neat way lattice and continuum methods.

Files

breakdown_prx3.pdf

Files (1.1 MB)

Name Size Download all
md5:a95435ab719762740577f4d86f17e910
1.1 MB Preview Download