Published April 30, 2020 | Version v1
Journal article Open

Business Sentiment Quotient Analysis using Natural Language Processing

  • 1. Research Scholar, Department of Computer Science & Engineering, Vidya Vikas Institute of Engineering & Technology, Mysuru, Visvesvaraya Technological University, Belagavi, India,
  • 2. Professor and Head, Department of Computer Science & Engineering, Vidya Vikas Institute of Engineering & Technology, Mysuru, Visvesvaraya Technological University, Belagavi, India,
  • 1. Publisher

Description

Online business has opened up several avenues for researchers and computer scientists to initiate new research models. The business activities that the customers accomplish certainly produce abundant information /data. Analysis of the data/information will obviously produce useful inferences and many declarations. These inferences may support the system in improving the quality of service, understand the current market requirement, Trend of the business, future need of the society and so on. In this connection the current paper is trying to propose a feature extraction technique named as Business Sentiment Quotient (BSQ). BSQ involves word2vec[1] word embedding technique from Natural Language Processing. Number of tweets related to business are accessed from twitter and processed to estimate BSQ using python programming language. BSQ may be utilized for further Machine Learning Activities.

Files

D8721049420.pdf

Files (333.7 kB)

Name Size Download all
md5:148c9755b370702a9d39af1177bb8163
333.7 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 2249-8958 (ISSN)

Subjects

ISSN
2249-8958
Retrieval Number
D8721049420/2020©BEIESP