Report Open Access

< QC | HPC >: Quantum for HPC

Bartsch, Valeria; Colin de Verdière, Guillaume; Nominé, Jean-Philippe; Ottaviani, Daniele; Dragoni, Daniele; Bouazza, Chayma; Magugliani, Fabrizio; Bowden, David; Allouche, Cyril; Johansson, Mikael; Terzo, Olivier; Scarabosio, Andrea; Vitali, Giacomo; Shagieva, Farida; Michielsen, Kristel

Quantum Computing (QC) describes a new way of computing based on the principles of quantum mechanics. From a High Performance Computing (HPC) perspective, QC needs to be integrated:

  • at a system level, where quantum computer technologies need to be integrated in HPC clusters;
  • at a programming level, where the new disruptive ways of programming devices call for a full hardware-software stack to be built;
  • at an application level, where QC is bound to lead to disruptive changes in the complexity of some applications so that compute-intensive or intractable problems in the HPC domain might become tractable in the future.

The White Paper QC for HPC focuses on the technology integration of QC in HPC clusters, gives an overview of the full hardware-software stack and QC emulators, and highlights promising customised QC algorithms for near-term quantum computers and its impact on HPC applications. In addition to universal quantum computers, we will describe non-universal QC where appropriate. Recent research references will be used to cover the basic concepts. Thetarget audience of this paper is the European HPC community: members of HPC centres, HPC algorithm developers, scientists interested in the co-design for quantum hardware, benchmarking, etc.

Files (3.2 MB)
Name Size
ETP4HPC_WP_Quantum4HPC_FINAL.pdf
md5:42358a4759be57263ed6a8f8cdf9dc54
3.2 MB Download
  • Anguita, Davide, Sandro Ridella, Fabio Rivieccio, and Rodolfo Zunino. 2003. "Quantum optimization for training support vector machines." Neural Networks 16 (5-6): 763-770. doi:https://doi.org/10.1016/S0893-6080(03)00087-X.

  • Anschuetz, Eric R., Jonathan P. Olson, Alán Aspuru-Guzik, and Yudong Cao. 2018. "Variational Quantum Factoring." https://arxiv.org/abs/1808.08927.

  • Atos. n.d. "Q-Score: measure what truly matters." Accessed 2021. https://atos.net/en/solutions/q-score.

  • Bichsel, Benjamin, Maximilian Baader, and Timon Gehr. 2020. "Silq: a high-level quantum language with safe uncomputation and intuitive semantics." PLDI 2020: Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation. 286-300. doi:https://doi.org/10.1145/3385412.3386007.

  • Bitkom. n.d. "Bitkom-Übersicht Deutsches Quanten-Ökosystem v1.1." Accessed 2021. https://www.bitkom.org/sites/default/files/2021-03/deutsches_quanten-okosystem_v1.1_public.pdf.

  • Bobier, Jean-François, Matt Langione, Edward Tao, and Antoine Gourévitch. 2021. "What Happens When 'If' Turns to 'When' in Quantum Computing?" BCG. 21 07. https://www.bcg.com/fr-fr/publications/2021/building-quantum-advantage.

  • Bravo-Prieto, Carlos, Ryan LaRose, M. Cerezo, Yigit Subasi, Lukasz Cincio, and Patrick J. Coles. 2020. "Variational Quantum Linear Solver." https://arxiv.org/abs/1909.05820.

  • Britt, Keith A., and Travis S. Humble. 2017. "High-Performance Computing with Quantum Processing Units." ACM Journal on Emerging Technologies in Computing Systems 13 (3): 1-13. doi:https://doi.org/10.1145/3007651.

  • CEA LETI. n.d. "Five advantages of silicon spin." Accessed 2021. https://www.leti-cea.com/cea-tech/leti/english/Pages/Applied-Research/Strategic-Axes/Quantum-Computing/Fundamental-Advantage-of-Silicon-Spin/Five-advantages-of-silicon-spin.aspx.

  • Classiq. n.d. https://www.classiq.io/.

  • Dalyac, Constantin, Loïc Henriet, Emmanuel Jeandel, Wolfgang Lechner, Simon Perdrix, Marc Porcheron, and Margarita Veshchezerova. 2021. "Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles." EPJ Quantum Technlogy 8: 12. doi:https://doi.org/10.1140/epjqt/s40507-021-00100-3.

  • Deutsch, David. 1985. "Quantum theory, the Church–Turing principle and the universal quantum computer." Proceedings of the Royal Society A (Royal Society) 400 (1818). doi:https://doi.org/10.1098/rspa.1985.0070.

  • Devoret, M H, A Wallraff, and J M Martinis. 2004. "Superconducting Qubits: A Short Review." https://arxiv.org/abs/cond-mat/0411174.

  • Farhi, Edward, and Hartmut Neven. 2018. "Classification with Quantum Neural Networks on Near Term Processors." https://arxiv.org/abs/1802.06002.

  • Farhi, Edward, Jeffrey Goldstone, and Sam Gutmann. 2014. "A Quantum Approximate Optimization Algorithm." https://arxiv.org/abs/1411.4028.

  • Google Quantum AI. n.d. "Cirq." Accessed 2021. https://quantumai.google/cirq.

  • Grant, Erica, Travis S. Humble, and Benjamin Stump. 2021. "Benchmarking Quantum Annealing Controls with Portfolio Optimization." Physical Review Applied 15 (1): 014012. doi:https://doi.org/10.1103/PhysRevApplied.15.014012. Häffner, H., C.F. Roos, and R. Blatt. 2008. "Quantum computing with trapped ions." Physics Reports (Elsevier) 469 (4): 155-203. doi:https://doi.org/10.1016/j.physrep.2008.09.003.

  • Häffner, H., C.F. Roos, and R. Blatt. 2008. "Quantum computing with trapped ions." Physics Reports (Elsevier) 469 (4): 155-203. doi:https://doi.org/10.1016/j.physrep.2008.09.003.

  • Henriet, Loïc, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond, and Christophe Jurczak. 2020. "Quantum computing with neutral atoms." Quantum 4: 327. doi:https://doi.org/10.22331/q-2020-09-21-327.

  • IBM. n.d. "IBM's roadmap for scaling quantum technology." Accessed 2021. https://research.ibm.com/blog/ibm-quantum-roadmap.

  • Kitaev, A. Yu. 1995. "Quantum measurements and the Abelian Stabilizer Problem." Electronic Colloquium on Computational Complexity (ECCC). https://arxiv.org/abs/quant-ph/9511026.

  • Kurek, Michel. 2020. "Technologies quantiques: vers la seconde révolution." https://www.researchgate.net/publication/350521248_TECHNOLOGIES_QUANTIQUES_VERS_LA_SECONDE_REVOLUTION.

  • Lloyd, Seth, Masoud Mohseni, and Patrick Rebentrost. 2013. "Quantum algorithms for supervised and unsupervised machine learning." https://arxiv.org/abs/1307.0411.

  • Lucas, Andrew. 2014. "Ising formulations of many NP problems." Frontiers in Physics 2: 5. doi:https://doi.org/10.3389/fphy.2014.00005.

  • Martiel, Simon, Thomas Ayral, and Cyril Allouche. 2021. "Benchmarking Quantum Coprocessors in an Application-Centric, Hardware-Agnostic, and Scalable Way." IEEE Transactions on Quantum Engineering 2. doi:https://doi.org/10.1109/TQE.2021.3090207.

  • Peruzzo, Alberto, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. 2014. "A variational eigenvalue solver on a photonic quantum processor." Nature Communications 5: 4213. doi:https://doi.org/10.1038/ncomms5213.

  • Pulser. n.d. Accessed 2021. https://pulser.readthedocs.io.

  • Qiskit. n.d. Accessed 2021. https://qiskit.org/.

  • Quantum Computing Report. n.d. "Players." Accessed 2021. https://quantumcomputingreport.com/players/.

  • Sarkar, Aritra, Zaid Al-Ars, and Koen Bertels. 2021. "QuASeR: Quantum Accelerated de novo DNA sequence reconstruction." PLoS ONE 16 (4). doi:https://doi.org/10.1371/journal.pone.0249850.

  • Veldhorst, M., H. G. J. Eenink, C. H. Yang, and A. S. Dzurak. 2017. "Silicon CMOS architecture for a spin-based quantum computer." Nature Communications 8: 1766. doi:https://doi.org/10.1038/s41467-017-01905-6.

  • Wang, Chi, Huo Chen, and Edmond Jonckheere. 2016. "Quantum versus simulated annealing in wireless interference network optimization." Scientific Reports 6: 25797. doi:https://doi.org/10.1038/srep25797.

269
118
views
downloads
All versions This version
Views 269269
Downloads 118118
Data volume 380.5 MB380.5 MB
Unique views 262262
Unique downloads 107107

Share

Cite as