Published September 30, 2021 | Version 0.1.0
Dataset Open

Multidimensional XUV Photoemission Spectroscopy of 1T-TiTe2 for different crystal orientations

  • 1. Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405 Talence, France & Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
  • 2. Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  • 3. Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany & New Technologies-Research Center, University of West Bohemia, 30614 Pilsen, Czech Republic
  • 4. Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
  • 5. Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, Würzburg, Germany
  • 6. New Technologies-Research Center, University of West Bohemia, 30614 Pilsen, Czech Republic
  • 7. Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany & Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin, Germany

Description

We performed extreme ultraviolet (21.7 eV) multidimensional angle-resolved photoemission spectroscopy for two different crystal orientations linked to each other by mirror symmetry, we isolate and identify the role of orbital texture in photoemission from the transition metal dichalcogenide 1T-TiTe$_2$. By comparing these experimental results with theoretical calculations based on both a quantitative one-step model of photoemission and an intuitive tight-binding model, we unambiguously demonstrate the link between the momentum-dependent orbital orientation and the emergence of strong intrinsic linear dichroism in the photoelectron angular distributions.

Notes

This work was funded by the Max Planck Society, the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant No. ERC-2015-CoG-682843, H2020-FETOPEN-2018-2019-2020-01 (OPTOLogic - grant agreement No. 899794)), and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the Emmy Noether program (Grant No. RE 3977/1), the Collaborative Research Center/Transregio 227 "Ultrafast Spin Dynamics" (project A09 and B07), the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter – ct.qmat (EXC 2147, project-id 39085490), and the Priority Program SPP 2244 (project No. 443366970). J.S. and J.M. would like to thank CEDAMNF project financed by the Ministry of Education, Youth and Sports of Czech Republic, Project No. CZ.02.1.01/0.0/0.0/15.003/0000358. M.S. thanks the Alexander von Humboldt Foundation for its support with a Feodor Lynen scholarship. S.B. acknowledges financial support from the NSERC-Banting Postdoctoral Fellowships Program.

Files

Scheme_TiTe2.png

Files (17.6 MB)

Name Size Download all
md5:c1f8b2bde63ba5bbb090b71152dd39ea
715.8 kB Preview Download
md5:f04a9b4acd660ec04dde9eeae92b4fda
8.4 MB Download
md5:9f544fb8944cf89a9d846724608a3d5d
8.4 MB Download

Additional details

Related works

Is cited by
Journal article: arXiv:2107.07158 (arXiv)