SBC-Based Object and Text Recognition Wearable System using Convolutional Neural Network with Deep Learning Algorithm
Creators
- 1. Computer Engineering Department, College of Engineering, University of Perpetual Help System Laguna, City of Biñan, Laguna Philippines.
- 2. Electronics Engineering Department, College of Engineering and Graduate School, University of Perpetual Help System Laguna, City of Biñan, Laguna, 4024 Philippines.
Contributors
- 1. Publisher
Description
This Raspberry Single-Board Computer-Based Object and Text Real-time Recognition Wearable Device using Convolutional Neural Network through TensorFlow Deep Learning, Python and C++ programming languages, and SQLite database application, which detect stationary objects, road signs and Philippine (PHP) money bills, and recognized texts through camera and translate it to audible outputs such as English and Filipino languages. Moreover, the system has a battery notification status using an Arduino microcontroller unit. It also has a switch for object detection mode, text recognition mode, and battery status report mode. This could fulfill the incapability of visually impaired in identifying of objects and the lack of reading ability as well as reducing the assistance that visually impaired needs. Descriptive quantitative research, Waterfall System Development Life Cycle and Evolutionary Prototyping Models were used as the methodologies of this study. Visually impaired persons and the Persons with Disability Affairs Office of the City Government of Biñan, Laguna, Philippines served as the main respondents of the survey conducted. Obtained results stipulated that the object detection, text recognition, and its attributes were accurate and reliable, which gives a significant distinction from the current system to detect objects and recognize printed texts for the visually impaired people.
Files
C64740910321.pdf
Files
(948.6 kB)
Name | Size | Download all |
---|---|---|
md5:b577d85b55f954e34dd695a33994795b
|
948.6 kB | Preview Download |
Additional details
Related works
- Cites
- Journal article: 2277-3878 (ISSN)
Subjects
- ISSN
- 2277-3878
- Retrieval Number
- 100.1/ijrte.C64740910321