Published February 28, 2021 | Version v1
Journal article Open

Review on Accelerated Carbonation on the Properties of Concrete

  • 1. Assistant Professor, School of Civil Engineering, REVA University, Bangalore, Karnataka, India.
  • 2. Professor & Dean, Department of Civil Engineering, Shree Devi Institute of Engineering, Mangalore, Karnataka, India
  • 1. Publisher

Description

Concrete is an essential material in all constructions throughout the world. It has lot of uses in our daily routine life. Every material has to deteriorate and damage due to many factors in the same way the concrete also deteriorates. The carbonation process is identified as a main reason for the corrosion in reinforcement concrete structure. The mechanism of carbonation which includes the entrance of carbon dioxide (CO2) into the solid permeable framework of concrete to shape a situation by decreasing the pH around the fortification and inception of the corrosion procedure. This paper investigates the impact of the carbonation on the characteristics of the concrete like strength in compression, split tensile strength, flexural strength, shear strength and durability. The addition of supplementary cementitious materials like fly ash, GGBFS, rice husk ash, metakaolin is known to enhance the strength and durability of concrete in construction. In this paper an accelerated carbonation test has been done to assess concrete carbonation on specimens made with cement and with the partial replacement of cement by fly ash GGBFS, rice husk ash, metakaolin. An accelerated carbonation chamber has been constructed for creating an environment of carbonation process to occur and also the passage of carbon dioxide gas is kept constant for all the cubes, cylinders and beams. Concrete cubes, cylinders and beams are prepared for M30 grade subjected to different percentages of carbonation.

Files

C21230210321.pdf

Files (516.2 kB)

Name Size Download all
md5:1e65e4f4392ab89704fe21c45a819bcb
516.2 kB Preview Download

Additional details

Related works

Is cited by
Journal article: 2249-8958 (ISSN)

Subjects

ISSN
2249-8958
Retrieval Number
100.1/ijeat.C21230210321