Published August 3, 2021 | Version 2
Journal article Open

Spontaneity of nuclear fusion: a qualitative analysis via classical thermodynamics

  • 1. Dept. of Fusion and Technology for Nuclear Safety and Security, ENEA C.R. Frascati, Via E. Fermi 45, Frascati, 00044, Italy

Description

Background: So far the feasibility of nuclear reactions has been studied only through the evaluation of the reaction rate, which gives us information about the kinetics, while the thermodynamic analysis has been limited to evaluations of the change in enthalpy without any consideration of the change in entropy.

Methods: This work examines the thermodynamics of nuclear fusion reactions through a simplified approach. The analysis introduces the thermodynamic study of fission and fusion reactions through their comparison with a chemical process.

Results: The main result is that fission reactions are always spontaneous (ΔG < 0) since a lot of energy is released in the form of heat and the system moves spontaneously towards a more disordered state. In contrast, fusion reactions are spontaneous only when the enthalpic contribution of the change in Gibbs free energy overcomes the entropic contribution. This condition is verified when the temperature of the process is below a characteristic value T*, calculated as the ratio between the energy corresponding to the mass defect and the change of entropy of the fusion reaction.

Conclusions: Due to the unavailability of data related to entropy changes in fusion reactions, only a qualitative thermodynamic analysis has been carried out. Through such analysis, the influence of the operating conditions over the spontaneity of fusion processes has been discussed. The final considerations emphasize the role of the thermodynamics analysis that should be implemented in the current studies that, so far, have been mainly based on the assessment of the reaction rate and exothermicity of fusion reactions.

Files

openreseurope-1-15122.pdf

Files (1.1 MB)

Name Size Download all
md5:ddffb7b8896cc610dedfd3a6432ad6eb
1.1 MB Preview Download

Additional details

References

  • Post RF (1956). Controlled Fusion Research-An Application of the Physics of High Temperature Plasmas. Rev Mod Phys. doi:10.1103/RevModPhys.28.338
  • Artsimovich L (1972). The Road to Controlled Nuclear Fusion. Nature. doi:10.1038/239018a0
  • Toschi R (1997). Nuclear fusion, an energy source. Fusion Eng Des. doi:10.1016/S0920-3796(97)00007-0
  • Ongena J (2018). Fusion: a true challenge for an enormous reward. EPJ Web Conf. doi:10.1051/epjconf/201818900015
  • Parkins WE (2006). Energy. Fusion Power: Will It Ever Come?. Science. doi:10.1126/science.1125657
  • Carruthers R (1981). The Fusion Dilemma. Interdiscip Sci Rev. doi:10.1179/isr.1981.6.2.127
  • Sheffield J (1985). Physics requirements for an attractive magnetic fusion reactor. Nucl Fusion. doi:10.1088/0029-5515/25/12/003
  • Moir RW (1986). Feasibility study of a magnetic fusion production reactor. J Fusion Energy. doi:10.1007/BF01051015
  • Ongena J, Koch R, Wolf R (2016). Magnetic-confinement fusion. Nat Phys. doi:10.1038/nphys3745
  • Zolti E (1999). Nuclear Fusion: Luxurious mirage of a long-term future energy option?. Int J Energy Res. doi:10.1002/(SICI)1099-114X(19990310)23:3%3C259::AID-ER503%3E3.0.CO;2-K
  • Campbell DJ, Akiyama T, Barnsley R (2019). Innovations in Technology and Science R&D for ITER. J Fusion Energy. doi:10.1007/S10894-018-0187-9
  • Denbigh KG (1981). The Principles of Chemical Equilibrium: With Applications in Chemistry and Chemical Engineering. doi:10.1017/CBO9781139167604
  • Atzeni S, Meyer-ter-Vehn J (2008). The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter. doi:10.1093/acprof:oso/9780198562641.001.0001
  • Berlinguette CP, Chiang YM, Munday JN (2019). Revisiting the cold case of cold fusion. Nature. doi:10.1038/s41586-019-1256-6
  • DeTar DF (1998). Theoretical ab Initio Calculation of Entropy, Heat Capacity, and Heat Content. J Phys Chem A. doi:10.1021/jp981195o
  • Suárez D, Díaz N (2015). Direct methods for computing single-molecule entropies from molecular simulations. WIREs Comput Mol Sci. doi:10.1002/wcms.1195
  • van Speybroeck V, Ganib R, Meier RJ (2010). The calculation of thermodynamic properties of molecules. Chem Soc Rev. doi:10.1039/b809850f
  • Baldo M, Ferreira LS (1999). Nuclear liquid-gas phase transition. Phys Rev C. doi:10.1103/PhysRevC.59.682
  • Holt JW, Kaiser N, Weise W (2013). Nuclear Chiral Dynamics and Thermodynamics. Prog Part Nucl Phys. doi:10.1016/j.ppnp.2013.08.001
  • Somà V, Bożek P (2009). Thermodynamic properties of nuclear matter with three-body forces. Phys Rev C. doi:10.1103/PhysRevC.80.025803
  • Carbone A (2020). Setting nonperturbative uncertainties on finite-temperature properties of neutron matter. Phys Rev Res. doi:10.1103/PhysRevResearch.2.023227
  • Lu BN, Li N, Elhatisari S (2020). nuclear thermodynamics. Phys Rev Lett. doi:10.1103/PhysRevLett.125.192502
  • Isvoranu D, Badescu V (2008). Radiation exergy: the case of thermal and nuclear energy. International Journal of Nuclear Governance, Economy and Ecology. doi:10.1504/IJNGEE.2008.017357
  • Badescu V (2009). Exergy of nuclear radiation — a quantum statistical thermodynamics approach. Cent Eur J Phys. doi:10.2478/s11534-008-0136-8