Journal article Open Access

Automatic Table Detection, Structure Recognition and Data Extraction from Document Images

Borra Vineetha; D. N. D. Harini; Ravi Yelesvarupu

Sponsor(s)
Blue Eyes Intelligence Engineering & Sciences Publication (BEIESP)

In the recent advancement, the extensive usage of electronic devices to photograph and upload documents, the requirement for extracting the information present in the unstructured document images is becoming progressively intense. The major obstacle to the objective is, these images often contain information in tabular form and extracting the data from table images presents a series of challenges due to the various layouts and encodings of the tables. It includes the accurate detection of the table present in an image and eventually recognizing the internal structure of the table and extracting the information from it. Although some progress has been made in table detection, obtaining the table contents is still a challenge since this involves more fine-grained table structure (rows and columns) recognition. The digitization of critical information has to be carried out automatically since there are millions of documents. Based on the motivation that AI-based solutions are automating many processors, this work comprises three different stages: First, the table detection using Faster R-CNN algorithm. Second, table internal structure recognition process using morphology operation and refine operation and last the table data extraction using contours algorithm. The dataset used in this work was taken from the UNLV dataset 

Files (757.5 kB)
Name Size
I93490710921.pdf
md5:88586f3ad8e4818690fc4d37ca9dcaee
757.5 kB Download
22
22
views
downloads
Views 22
Downloads 22
Data volume 16.7 MB
Unique views 17
Unique downloads 22

Share

Cite as