Dataset Open Access

Code and data for "KGML-ag: A Modeling Framework of Knowledge-Guided Machine Learning to Simulate Agroecosystems: A Case Study of Estimating N2O Emission using Data from Mesocosm Experiments "

Liu, Licheng; Zhenong Jin

This is code and data for manuscript: 
"KGML-ag: A Modeling Framework of Knowledge-Guided Machine Learning to Simulate Agroecosystems: 
A Case Study of Estimating N2O Emission using Data from Mesocosm Experiments"
Licheng Liu, Shaoming Xu, Zhenong Jin*, Jinyun Tang, Kaiyu Guan, Timothy J. Griffis, 
Matt D. Erickson, Alexander L. Frie, Xiaowei Jia, Taegon Kim, Lee T. Miller, Bin Peng, Shaowei Wu, Yufeng Yang, Wang Zhou, Vipin Kumar

All the files belong to Prof. Zhenong Jin, University of Minnesota, UA. jinzn@umn.edu
"code" foler includes code for data processing, model training, and results plotting.
"trained_model_saved" includes all trained model so you can use to reproduce the results showed in the study;
"data" includes all data presented in the study. Finetuning data is refering to Miller, L.T. , Griffis, T. J., Erickson, M. D.,  Turner, P. A., Deventer, M. J., Chen, Z., Yu,  Z., Venterea, R.T., Baker, J. M., and Frie, A. L. (2021). Response of nitrous oxide emissions to future changes in precipitation and individual rain events. Journal of Environmental Quality, In review

Files (3.6 GB)
Name Size
code.zip
md5:38e5d6277280abc67db7b12354434012
18.7 MB Download
data.zip
md5:b5957a9353bdc69b9dd32bc68633c54c
3.5 GB Download
ReadMe.txt
md5:90ba3dcaa0413cd56c9a2f559c74c5b6
775 Bytes Download
trained_model_saved.zip
md5:6e4b3d3b38939962bc03c319aba836fc
124.0 MB Download
  • Miller, L.T. , Griffis, T. J., Erickson, M. D., Turner, P. A., Deventer, M. J., Chen, Z., Yu, Z., Venterea, R.T., Baker, J. M., and Frie, A. L. (2021). Response of nitrous oxide emissions to future changes in precipitation and individual rain events. Journal of Environmental Quality, In review

315
266
views
downloads
All versions This version
Views 315315
Downloads 266266
Data volume 295.4 GB295.4 GB
Unique views 287287
Unique downloads 124124

Share

Cite as