Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published August 31, 2021 | Version v1
Journal article Open

Optimization of titanium dioxide wetting in alkyd paint and varnish materials in the presence of surfactants

  • 1. Non-profit limited company "Manash Kozybayev North Kazakhstan university"

Description

This paper reports the results of studying the influence of surfactants (SAS) on the wetting of titanium dioxide in alkyd paint and varnish materials (PVM), based on pentaphthalic (PPh) and alkyd-urethane (AU) film-forming substances. Edge wetting angle (θ°) and adhesion work (Wa) were used as the criteria for assessing the wettability of titanium dioxide. Three additives were used as SAS: the original product AS-1, obtained from waste of oil refining (with low cost), and industrial additives: "Telaz" and polyethylene polyamine (PEPA). All the studied additives in PPh and AU PVM improve the wetting of titanium dioxide. At the 30 % content of AS film-forming substance in the composition, the maximum decrease in θ° for AS-1 is 4.5°, for PEPA and Telaz it is 4°. For pentaphthalic composition under similar conditions, a decrease in edge wetting angle for AS-1 is 10 °, for Telaz 8.6°, and for PEPA 5.9°. According to the relative change in edge wetting angle for both systems, the maximum decrease in θ° is about 10 %. The introduction of SAS into the composition of AU ambiguously affects the adhesion work, for PPh, the introduction of SAS causes a decrease in adhesion work (Wa). AS-1 is the SAS that minimally reduces adhesion work. The compositions of the PVM by the method of probabilistic-deterministic planning, which ensures maximum wetting of titanium dioxide with film-forming solutions, were analyzed. The equations for calculating the edge angle of wetting of titanium dioxide depending on the content of solvent and the SAS in the PVM were derived. The effectiveness of the AS-1 product as a wetting additive for alkyd paints and varnishes was proven. The wetting ability of the original SAS – AS-1 is close to industrial additives PEPA and Telaz.

Files

Optimization of titanium dioxide wetting in alkyd paint and varnish materials in the presence of surfactants.pdf

Additional details

References

  • Chardon, F., Denis, M., Negrell, C., Caillol, S. (2021). Hybrid alkyds, the glowing route to reach cutting-edge properties? Progress in Organic Coatings, 151, 106025. doi: http://doi.org/10.1016/j.porgcoat.2020.106025
  • Bolatbaev, K. N., Dyuryagina, A. N., Nurushov, A. K., Korytina, O. G. (2004). Pat. No. 14467 RK. Sposob polucheniya ingibitorov kislotnoy korrozii metallov (varianty). MPK: C23F 11/10, C23F 11/04. published: 25.02.2004.
  • Wypych, G. (2018). Surface tension reduction and wetting. Databook of Surface Modification Additives. ChemTec Publishing, 492–585. doi: http://doi.org/10.1016/b978-1-927885-35-2.50010-6
  • Jeffs, R. A., Jones, W.; Lambourne, R., Strivens, T. A. (Eds.) (1999). Additives for paint. Paint and Surface Coatingsю Woodhead Publishing, 185–197. doi: http://doi.org/10.1533/9781855737006.185
  • Kornum, L. O., Raaschou Nielsen, H. K. (1980). Surface defects in drying paint films. Progress in Organic Coatings, 8 (3), 275–324. doi: http://doi.org/10.1016/0300-9440(80)80019-1
  • Chistyakov, B. E.; Fainerman, V. B., Möbius, D., Miller, R. (2001). 6. Theory and practical application aspects of surfactants. Surfactants – Chemistry, Interfacial Properties, Applications. Elsevier, 511–618. doi: http://doi.org/10.1016/s1383-7303(01)80067-3
  • Doroszkowski, A.; Lambourne, R., Strivens, T. A. (Eds.) (1999). The physical chemistry of dispersion. Paint and Surface Coatings. Woodhead Publishing, 198–242. doi: http://doi.org/10.1533/9781855737006.198
  • Basin, V. E. (1984). Advances in understanding the adhesion between solid substrates and organic coatings. Progress in Organic Coatings, 12 (3), 213–250. doi: http://doi.org/10.1016/0033-0655(84)80010-2
  • Parfitt (deceased), G. D., Barnes, H. A.; Harnby, N., Edwards, M. F., Nienow, A. W. (1992). The dispersion of fine particles in liquid media. Mixing in the Process Industries. Butterworth-Heinemann, 99–117. doi: http://doi.org/10.1016/b978-075063760-2/50027-5
  • Moncayo-Riascos, I., Hoyos, B. A. (2020). Fluorocarbon versus hydrocarbon organosilicon surfactants for wettability alteration: A molecular dynamics approach. Journal of Industrial and Engineering Chemistry, 88, 224–232. doi: http://doi.org/10.1016/j.jiec.2020.04.017
  • Loganina, V., Mazhitov, E. (2018). The research of inter-phase interaction in sol-silicate paints. Bulletin of Belgorod State Technological University Named after. V. G. Shukhov, 3 (3), 13–17. doi: http://doi.org/10.12737/article_5abfc9b826b8c4.02971523
  • Sharmin, E., Zafar, F., Akram, D., Alam, M., Ahmad, S. (2015). Recent advances in vegetable oils based environment friendly coatings: A review. Industrial Crops and Products, 76, 215–229. doi: http://doi.org/10.1016/j.indcrop.2015.06.022
  • Randall, P. M. (1992). Pollution prevention methods in the surface coating industry. Journal of Hazardous Materials, 29 (2), 275–295. doi: http://doi.org/10.1016/0304-3894(92)85073-a
  • Malyshev, V. P. (1981). Veroyatnostno– determinirovannoe planirovanie eksperimenta. Alma-Ata: Nauka AN KazSSR, 116.
  • Finni, D. (1970). Vvedenie v teoriyu planirovaniya eksperimentov. Moscow: Nauka, 288.
  • Demyanenko, A. V. (2006). Matematicheskie i kompyuternye metody v khimii. Petropavlovsk: SKGU im. M. Kozybaeva, 81.
  • Protodyakonov, M. M. (1932). Sostavlenie gornykh norm i polzovanie imi. Moscow-Leningrad, Novosibirsk: Gos. Nauchno-tekhn. Gornoe izd-vo, 36.
  • Lvovskiy, E. N. (1982). Statisticheskie metody postroeniya empiricheskikh formul. Moscow: Vysshaya shkola, 224.