Published August 31, 2021 | Version v1
Journal article Open

Devising a new filtration method and proof of self-similarity of electromyograms

  • 1. Petro Mohyla Black Sea National University
  • 2. Kherson National Technical University

Description

The main attention is paid to the analysis of electromyogram (EMG) signals using Poincaré plots (PP). It was established that the shapes of the plots are related to the diagnoses of patients. To study the fractal dimensionality of the PP, the method of counting the coverage figures was used. The PP filtration was carried out with the help of Haar wavelets. The self-similarity of Poincaré plots for the studied electromyograms was established, and the law of scaling was used in a fairly wide range of coverage figures. Thus, the entire Poincaré plot is statistically similar to its own parts. The fractal dimensionalities of the PP of the studied electromyograms belong to the range from 1.36 to 1.48. This, as well as the values of indicators of Hurst exponent of Poincaré plots for electromyograms that exceed the critical value of 0.5, indicate the relative stability of sequences.

The algorithm of the filtration method proposed in this research involves only two simple stages:

  1. Conversion of the input data matrix for the PP using the Jacobi rotation.
  2. Decimation of both columns of the resulting matrix (the so-called "lazy wavelet-transformation", or double downsampling).

The algorithm is simple to program and requires less machine time than existing filters for the PP.

Filtered Poincaré plots have several advantages over unfiltered ones. They do not contain extra points, allow direct visualization of short-term and long-term variability of a signal. In addition, filtered PPs retain both the shape of their prototypes and their fractal dimensionality and variability descriptors. The detected features of electromyograms of healthy patients with characteristic low-frequency signal fluctuations can be used to make clinical decisions.

Files

Devising a new filtration method and proof of self-similarity of electromyograms.pdf

Additional details

References

  • Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G. et. al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101 (23), e215–e220. doi: http://doi.org/10.1161/01.cir.101.23.e215
  • Reaz, M. B. I., Hussain, M. S., Mohd-Yasin, F. (2006). Techniques of EMG signal analysis: detection, processing, classification and applications. Biological Procedures Online, 8 (1), 11–35. doi: http://doi.org/10.1251/bpo115
  • Chuiko, G. P., Shyian, I. A. (2015). Processing and analysis of electroneuromyograms with Maple tools. Biomedical Engineering and Electronics, 10. Available at: http://biofbe.esrae.ru/pdf/2015/3/1006.pdf
  • Kantz, H., Schreiber, T. (2010). Nonlinear Time Series Analysis. Cambridge: Cambridge University Press. doi: http://doi.org/10.1017/cbo9780511755798
  • Burykin, A., Costa, M. D., Citi, L., Goldberger, A. L. (2014). Dynamical density delay maps: simple, new method for visualising the behaviour of complex systems. BMC Medical Informatics and Decision Making, 14 (1). doi: http://doi.org/10.1186/1472-6947-14-6
  • Karmakar, C. K., Khandoker, A. H., Gubbi, J., Palaniswami, M. (2009). Complex Correlation Measure: a novel descriptor for Poincaré plot. BioMedical Engineering OnLine, 8 (1). doi: http://doi.org/10.1186/1475-925x-8-17
  • Golińska, A. K. (2013). Poincaré Plots in Analysis of Selected Biomedical Signals. Studies in Logic, Grammar and Rhetoric, 35 (1), 117–127. doi: http://doi.org/10.2478/slgr-2013-0031
  • Tulppo, M. P., Makikallio, T. H., Takala, T. E., Seppanen, T., Huikuri, H. V. (1996). Quantitative beat-to-beat analysis of heart rate dynamics during exercise. American Journal of Physiology-Heart and Circulatory Physiology, 271 (1), H244–H252. doi: http://doi.org/10.1152/ajpheart.1996.271.1.h244
  • Piskorski, J., Guzik, P. (2005). Filtering Poincaré plots. Computational Methods in Science and Technology, 11 (1), 39–48. doi: http://doi.org/10.12921/cmst.2005.11.01.39-48
  • Hansen, P. C., Jensen, S. H. (1998). FIR filter representations of reduced-rank noise reduction. IEEE Transactions on Signal Processing, 46 (6), 1737–1741. doi: http://doi.org/10.1109/78.678511
  • Figueiredo, N., Georgieva, P., Lang, E. W., Santos, I. M., Teixeira, A. R., Tomé, A. M. (2010). SSA of biomedical signals: A linear invariant systems approach. Statistics and Its Interface, 3 (3), 345–355. doi: http://doi.org/10.4310/sii.2010.v3.n3.a8
  • Harris, T. J., Yuan, H. (2010). Filtering and frequency interpretations of Singular Spectrum Analysis. Physica D: Nonlinear Phenomena, 239 (20-22), 1958–1967. doi: http://doi.org/10.1016/j.physd.2010.07.005
  • Review of New Features in Maple 18. Available at: https://www.wolfram.com/mathematica/compare-mathematica/files/ReviewOfMaple18.pdf
  • Chuiko, G. P., Shyian, I. O., Galyak, D. A. (2015). Interface elements of scientific web-resource physionet and import data to computer mathematics system Maple 17. Medical Informatics and Engineering, (3), 84–88. doi: http://doi.org/10.11603/mie.1996-1960.2015.3.5008
  • Gorban, A. N., Zinovyev, A. Y. (2008). Principal Graphs and Manifolds. Handbook of Research on Machine Learning Applications and Trends, 28–59. doi: http://doi.org/10.4018/978-1-60566-766-9.ch002
  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. (2007). Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 1256.
  • Haar, A. (1910). Zur Theorie der orthogonalen Funktionensysteme. Mathematische Annalen, 69 (3), 331–371. doi: http://doi.org/10.1007/bf01456326
  • Dastourian, B., Dastourian, E., Dastourian, S., Mahnaie, O. (2014). Discrete Wavelet Transforms Of Haar's Wavelet. International Journal of Scientific & Technology Research, 3 (9), 247–251. Available at: http://www.ijstr.org/final-print/sep2014/Discrete-Wavelet-Transforms-Of-Haars-Wavelet-.pdf
  • Mandelbrot, B. (1967). How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension. Science, 156 (3775), 636–638. doi: http://doi.org/10.1126/science.156.3775.636
  • Bourke, P. (2014). Box counting fractal dimension of volumetric data. Available at: http://paulbourke.net/fractals/cubecount/
  • Gneiting, T., Schlather, M. (2004). Stochastic Models That Separate Fractal Dimension and the Hurst Effect. SIAM Review, 46 (2), 269–282. doi: http://doi.org/10.1137/s0036144501394387
  • Mäkikallio, T. (1998). Analysis of heart rate dynamics by methods derived from nonlinear mathematics. Clinical applicability and prognostic significance. Oulu: University of Oulu. Available at: http://jultika.oulu.fi/files/isbn9514250133.pdf Last accessed: 06.02.2020
  • Huikuri, H. V., Mäkikallio, T. H., Peng, C.-K., Goldberger, A. L., Hintze, U., Møller, M. (2000). Fractal Correlation Properties of R-R Interval Dynamics and Mortality in Patients With Depressed Left Ventricular Function After an Acute Myocardial Infarction. Circulation, 101 (1), 47–53. doi: http://doi.org/10.1161/01.cir.101.1.47
  • Voss, A., Schulz, S., Schroeder, R., Baumert, M., Caminal, P. (2008). Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367 (1887), 277–296. doi: http://doi.org/10.1098/rsta.2008.0232
  • Carvalho, T. D., Pastre, C. M., Moacir Fernandes de Godoy, Pitta, F. O., de Abreu, L. C., Ercy Mara Cipulo Ramos et. al. (2011). Fractal correlation property of heart rate variability in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease, 6, 23–28. doi: http://doi.org/10.2147/copd.s15099
  • Gomes, R. L., Vanderlei, L. C. M., Garner, D. M., Vanderlei, F. M., Valenti, V. E. (2017). Higuchi Fractal Analysis of Heart Rate Variability is Sensitive during Recovery from Exercise in Physically Active Men. Medical Express, 4 (2). doi: http://doi.org/10.5935/medicalexpress.2017.02.03
  • Antônio, A. M. S., Cardoso, M. A., Carlos de Abreu, L., Raimundo, R. D., Fontes, A. M. G. G., Garcia da Silva A. et. al. (2014). Fractal Dynamics of Heart Rate Variability: A Study in Healthy Subjects. Journal of Cardiovascular Development and Disease, 2 (3), 2330–460.
  • Chuiko, G. P., Dvornik, O. V., Darnapuk, Y. S. (2018). Shape Evolutions of Poincaré Plots for Electromyograms in Data Acquisition Dynamics. 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP), 119–122. doi: http://doi.org/10.1109/dsmp.2018.8478516