Published March 31, 2017 | Version v1
Journal article Open

Radiation and Internal-Loss Engineering of High-Stress Silicon Nitride Nanobeams

Description

High-stress Si3N4 nanoresonators have become an attractive choice for electro- and optomechanical devices. Membrane resonators can achieve quality factor (Q)–frequency (f) products exceeding 1013 Hz, enabling (in principle) quantum coherent operation at room temperature. String-like beam resonators possess smaller Q × f products; however, on account of their significantly lower mass and mode density, they remain a canonical choice for precision force, mass, and charge sensing, and have recently enabled Heisenberg-limited position measurements at cryogenic temperatures. Here we explore two techniques to enhance the Q of a nanomechanical beam. The techniques relate to two main loss mechanisms: internal loss, which dominates for high aspect ratios and f ≲ 100 MHz, and radiation loss, which dominates for low aspect ratios and f ≳ 100 MHz. First, we show that by embedding a nanobeam in a 1D phononic crystal (PnC), it is possible to localize its flexural motion and shield it against radiation loss. Using this method, we realize f > 100 MHz modes with Q ≈ 104, consistent with internal loss and contrasting sharply with unshielded beams of similar dimensions. We then study the Q × f product of high-order modes of millimeter-long nanobeams. Taking advantage of the mode-shape dependence of stress-induced “loss dilution”, we realize a f ≈ 4 MHz mode with Q × f ≈ 9 × 1012 Hz. Our results complement recent work on PnC-based “soft-clamping” of nanomembranes, in which mode localization is used to enhance loss dilution. Combining these strategies should enable ultra-low-mass nanobeam oscillators that operate deep in the quantum coherent regime at room temperature.

Notes

http://pubs.acs.org/doi/full/10.1021/acs.nanolett.7b00573

Files

1.png

Files (39.1 MB)

Name Size Download all
md5:6f321049b01fc4f40cbe4bdae3d7e55c
24.1 kB Preview Download
md5:b66459f73dc490762482fff8157e2781
146.2 kB Preview Download
md5:d9825c7cc1187c5b5c786e17ccd36aa0
29.2 kB Preview Download
md5:531034523ad90b7750a0b37488a9dfd7
140.8 kB Preview Download
md5:a4898d3c9f8c2796ac346d7946c57e65
29.4 kB Preview Download
md5:ebbb3e72d15c7747a928dcb4057e6804
31.7 kB Preview Download
md5:5f935c8efa984596a61597136f62e3ec
22.2 kB Preview Download
md5:051bed8240f8f899fa38abd390add089
69.3 kB Preview Download
md5:bd32e74e75b0937f5f366b09fe40e6c0
96.1 kB Preview Download
md5:83737f78c2f23278036e46e7a1c1377e
24.8 kB Preview Download
md5:7a666508c4f7dff5a76c8ba9b644f568
31.8 kB Preview Download
md5:f29c7b25aac979d89780cb60bb01e28e
66.3 kB Preview Download
md5:006da4bdee1a01a3373e5fe53dc899c5
33.1 kB Preview Download
md5:0eb1103341f12258160fd928e2ac60d5
34.3 kB Preview Download
md5:6294b1a75a2f9f34d7d2a8743ae273b1
61.0 kB Preview Download
md5:9613a5362e115446aa863bcdfefa3637
24.1 kB Preview Download
md5:beebeb2c1c8515fd304f4e7d0862a815
50.4 kB Preview Download
md5:35bb3a4865c03eb7c392756dbf2d44b0
47.1 kB Preview Download
md5:59f8e3a72223a8d0491a81416c49e93e
39.9 kB Preview Download
md5:2927de2c982d40c92420dfe5732ad519
87.6 kB Preview Download
md5:d1ca41a9d1eba3fc4bdc556e56de15e0
160.2 kB Preview Download
md5:5c406eb494feed4050f8f67c3a75cc0f
4.3 MB Preview Download
md5:29decc65b093ad276242aa2089944cd2
17.9 MB Preview Download
md5:9e2e47dc4381ae6ed4485e65b17eddac
3.2 MB Preview Download
md5:2696248ab6fc25a0950ad60cbf19c1ac
22.4 kB Download
md5:11e75f21b8cdcafbb58477e436b3b629
65.1 kB Download
md5:e2ee57e47c99f9fd9af87258eab76f16
8.4 MB Download
md5:9741a09d6c9810067dc9ef58ba7e01ce
519.0 kB Download
md5:3fb7ecb9f5a6e748c0e11014d0225963
93.2 kB Download
md5:7b42379e6ccefd6acff590bdad4c1d63
3.0 MB Preview Download
md5:7882906315dc09f8a40645a0f2cd3527
110.2 kB Download
md5:e51f1d588077f7604c16a807b986f579
29.2 kB Download
md5:634ba5ccf34184e76bad90f6db01d08c
25.9 kB Preview Download
md5:7f83ae2e297a728f335a9ec15032daf1
48.4 kB Preview Download

Additional details

Related works

Is new version of
arXiv:1603.01605 (arXiv)