Published August 2, 2021
| Version v1
Dataset
Open
Supplementary data for "Deep learning for industrial processes: Forecasting amine emissions from a carbon capture plant"
Creators
- 1. EPFL
- 2. Heriot-Watt Univeristy
- 3. Solverlo Ltd
- 4. RWE Power AG
- 5. TNO
Description
A preliminary analysis of the data already has been discussed in 10.2139/ssrn.3812299.
Raw data
Raw measurement data is in the Excel files `day*_raw.xlsx`.
Model
Covariate and label scaler objects are serialized in joblib format in the following files:
- 20210812_y_transformer_co2_ammonia_reduced_feature_set
- 20210812_y_transformer__reduced_feature_set
- 20210812_x_scaler_reduced_feature_set
Checkpoints of the models are in the `*.pth.tar` files. An example for loading the models is:
from pyprocessta.model.tcn import TCNModelDropout
model_cov = TCNModelDropout(
input_chunk_length=8,
output_chunk_length=1,
num_layers=5,
num_filters=16,
kernel_size=6,
dropout=0.3,
weight_norm=True,
batch_size=32,
n_epochs=100,
log_tensorboard=True,
optimizer_kwargs={"lr": 2e-4},
)
model_cov.load_from_checkpoint('20210814_2amp_pip_model_reduced_feature_set_darts')
which assumes that the checkpoints are placed as `model_best.pth.tar` in a folder called `20210812_2amp_pip_model_reduced_feature_set_darts`.
Notes
Files
Files
(86.1 MB)
Name | Size | Download all |
---|---|---|
md5:207a5a3da5e9298f31d93ac8db5e8891
|
3.7 MB | Download |
md5:46fbea595227c04e4ceb18728991356d
|
2.9 MB | Download |
md5:2de8d0bf3eb336d97a525587f4fd3c20
|
13.1 MB | Download |
md5:d3b0b195550d617c920d504ff0935d0d
|
13.2 MB | Download |
md5:435b80d6a50978c3703d2e978bcbc434
|
13.2 MB | Download |
md5:d03ffc61d4c31b59ad3b7749a8e45c20
|
1.3 kB | Download |
md5:e058562d3d82824fe0c7209734d226f3
|
898 Bytes | Download |
md5:50ada8466bab60a4da6d9d5ac4488712
|
898 Bytes | Download |
md5:b9caab766a478e16fc7752171ff0aa9b
|
4.7 MB | Download |
md5:61a16ff510445a16bbd1c08ae386ce05
|
5.1 MB | Download |
md5:81544f44251de049e143aa378dba7727
|
5.3 MB | Download |
md5:036eb5a2ef20a3a608de9a0517ead38a
|
5.3 MB | Download |
md5:89028da6f918e01bd4b1e299eb42de81
|
5.1 MB | Download |
md5:b40876027c82c7a3ded946acc9988746
|
5.1 MB | Download |
md5:5fc68ca183d420e72685a4ed76535015
|
1.6 MB | Download |
md5:9b52e0f6c6a6e3b23ceac24b15fabd4b
|
4.7 MB | Download |
md5:87c7055692499590dc80c46a761b6696
|
1.5 MB | Download |
md5:f8069dcedd3b3ac8fb0c306a8af15caf
|
1.5 MB | Download |
Additional details
Related works
- Is documented by
- Conference paper: 10.2139/ssrn.3812299 (DOI)
- Is referenced by
- Software: https://github.com/kjappelbaum/pyprocessta (URL)
- Software: https://zenodo.org/badge/latestdoi/345727065 (URL)
Funding
- Swiss National Science Foundation
- Adding flexibility and light to the nanoporous materials genome 200021_172759