Published July 22, 2021 | Version v1
Poster Open

Pulsation in pre-main sequence stars: TESS observations & models from accreting protostars

  • 1. University of Innsbruck
  • 2. University of Texas at Austin
  • 3. University of Vienna

Contributors

Description

Stellar mass is clearly the most important parameter in stellar evolution, governing the entire evolution from the pre-main sequence to the final fate of the star. Despite that, our theoretical stellar models often ignore how stars have obtained their main sequence mass, although it is commonly accepted that the collapse of molecular clouds creates stellar seeds that subsequently accrete material from their surroundings. In this poster, we present calculations of the pre-main sequence evolution starting from the accreting phase. We compare these evolutionary tracks to spectroscopic parameters of young stellar objects and constrain free parameters in the accretion modelling. We investigate the pulsational instability of the calculated pre-main sequence models by calculating instability regions and comparing their positions to a sample of pre-main sequence pulsators. The latter are compiled from the literature and extended by discoveries made from TESS data. Finally, we present the first candidate M-type pulsating star discovered in TESS full-frame images.

Files

TESS_psoter_first_try.mp4

Files (42.5 MB)

Name Size Download all
md5:0e368aab2dfbd4731fe555b2fe776f82
38.8 MB Preview Download
md5:80f5b7047acec96d777f25a83678a878
2.7 MB Preview Download
md5:c464ce5f0b885a29b8a1183bb580976b
987.6 kB Preview Download

Additional details

Related works

Describes
arXiv:2107.07568 (arXiv)

References

  • Aidelman, Y., Cidale, L. S., Zorec, J., & Panei, J. A. 2018, A&A, 610, A30
  • Alecian, E., Wade, G. A., Catala, C., et al. 2013, MNRAS, 429, 1001
  • Baraffe, I., Chabrier, G., & Gallardo, J. 2009, ApJ, 702, L27
  • Da Rio, N., Tan, J. C., Covey, K. R., et al. 2016, ApJ, 818, 59
  • Dupret, M. A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005, A&A, 435, 927
  • Fairlamb, J. R., Oudmaijer, R. D., Mendigutía, I., Ilee, J. D., & van den Ancker,M. E. 2015, MNRAS, 453, 976
  • Frasca, A., Biazzo, K., Alcalá, J. M., et al. 2017, A&A, 602, A33
  • Gutiérrez Albarrán, M. L., Montes, D., Gómez Garrido, M., et al. 2020, A&A, 643, A71
  • Kunitomo, M., Guillot, T., Takeuchi, T., & Ida, S. 2017, A&A, 599, A49
  • Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
  • Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
  • Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
  • Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34
  • Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10
  • Rodríguez-López, C. 2019, Frontiers in Astronomy and Space Sciences, 6, 76
  • Steindl, T., Zwintz, K., Barnes, T. G., Müllner, M., Vorobyov, E. I. 2021, eprint arXiv:2107.07568 accepted for publication in A&A
  • Townsend, R. H. D. & Teitler, S. A. 2013, MNRAS, 435, 3406
  • Townsend, R. H. D., Goldstein, J., & Zweibel, E. G. 2018, MNRAS, 475, 879
  • Vioque, M., Oudmaijer, R. D., Schreiner, M., et al. 2020, A&A, 638, A21