Time-resolved spectroscopy and photometry of an M dwarf flare star YZ Canis Minoris with OISTER and TESS: Blue asymmetry in H-alpha line during the non-white light flare
Creators
- Maehara, Hiroyuki1
- Notsu, Yuta2
- Namekata, Kousuke1
- Honda, Satoshi3
- Kowalski, Adam F.2
- Katoh, Noriyuki4
- Ohshima, Tomohito3
- Iida, Kota5
- Oeda, Motoki5
- Murata, Katsuhiro L.5
- Yamanaka, Masayuki6
- Takagi, Kengo7
- Sasada, Mahito7
- Akitaya, Hiroshi8
- Ikuta, Kai6
- Okamoto, Soshi6
- Nogami, Daisaku6
- Shibata, Kazunari6
- 1. National Astronomical Observatory of Japan
- 2. University of Colorado Boulder
- 3. University of Hyogo
- 4. Kobe University
- 5. Tokyo Institute of Technology
- 6. Kyoto University
- 7. Hiroshima University
- 8. Chiba Institute of Technology
Description
We report the results from spectroscopic and photometric observations of the M-type flare star YZ CMi in the framework of the Optical and Infrared Synergetic Telescopes for Education and Research (OISTER) collaborations during the Transiting Exoplanet Survey Satellite (TESS) observation period. We detected 4 H-alpha flares and one of them did not show clear brightening in the continuum; during this flare, the H-alpha line exhibited blue-asymmetry which has lasted for \(\sim 60\) min. The line of sight velocity of the blue-shifted component is \(\sim -80\) km/s. Under the assumption of that observed blue-asymmetry in H-alpha line was caused by a prominence eruption, the mass and kinetic energy of the upward-moving material are estimated to be \(10^{16}\) - \(10^{18}\) g and \(10^{29.5}\) - \(10^{31.5}\) erg, respectively. Although the estimated mass is comparable to expectations from the empirical relation between the X-ray flare energy and mass of solar coronal mass ejections (CMEs), the estimated kinetic energy is roughly 2 orders of magnitude smaller than that expected from the relation for solar CMEs. This discrepancy could be understood by the difference in the velocity between CMEs and prominence eruptions (Maehara et al. 2021 PASJ, 73, 44).
Files
H.Maehara_TSC2.mp4
Additional details
Related works
- References
- Journal article: 10.1093/pasj/psaa098 (DOI)
References
- Airapetian, V. S., et al. (2020), Int. J. Astrobiology, 19, 136. doi:10.1017/S1473550419000132
- Argiroffi C., et al. (2019), Nature Astron., 3, 742. doi:10.1038/s41550-019-0781-4
- Gopalswamy N., et al., (2003), ApJ, 586, 562. doi:10.1086/367614
- Honda S., et al. (2018), PASJ, 70, 62. doi:10.1093/pasj/psy055
- Moschou S.-P., et al. (2019), ApJ, 877, 105. doi:10.3847/1538-4357/ab1b37
- Shibata, K., et al. (1995), ApJ Lett., 451, L83. doi:10.1086/309688
- Vida, K., et al. (2016), A&A, 590, A11. doi:10.1051/0004-6361/201527925
- Vida, K., et al. (2019), A&A, 623, A49. doi:10.1051/0004-6361/201834264
- Yamashiki, Y. A., et al. (2019), ApJ, 881, 114. doi:10.3847/1538-4357/ab2a71
- Yashiro S., Gopalswamy N. (2009), in IAU Symp. 257, Universal Heliophysical Processes, ed. Gopalswamy N., Webb D. F. (Cambridge: Cambridge University Press), 233. doi:10.1017/S1743921309029342