Conference paper Open Access

The LHS 1678 System: Two Small Planets and a Likely Brown Dwarf Orbiting a Nearby M Dwarf in Unconventional Circumstances

Silverstein, Michele L.; Schlieder, Joshua E.; Barclay, Thomas; Hord, Benjamin J.; Jao, Wei-Chun; Vrijmoet, Eliot Halley; Henry, Todd J.; Cloutier, Ryan; Kostov, Veselin B.; Kruse, Ethan; Winters, Jennifer G.; Irwin, Jonathan; Kane, Stephen R.; Stassun, Keivan G.; Huang, Chelsea; Kunimoto, Michelle; Tey, Evan; Vanderburg, Andrew; Collins, Karen A.; Astudillo-Defru, Nicola; Bonfils, Xavier

Adams, Elisabeth R

We present the LHS 1678 (TOI-696) exoplanet system: two nearly Earth-sized transiting planets detected by TESS and a likely brown dwarf orbiting a bright M2 dwarf at 19.9 pc. The ultra-short-period LHS 1678 b (0.70 Earth radii, 0.9-day orbit) is a captivating target for emission spectroscopy observations with the JWST. LHS 1678 c (0.98 Earth radii, 3.7-day orbit) is in the Venus-zone and may be Venus density: a promising target for greenhouse effect studies. Both planets are favorable targets for EPRV mass measurements and for JWST transmission spectroscopy observations to study their atmospheres. The substellar companion, detected via CTIO/SMARTS 0.9m astrometry, is on a decades-long orbit and may someday eclipse the host star, revealing a rare system architecture in which more and less massive objects orbit in the same plane. There is also a candidate third planet detected in TESS multi-cycle data in near 4:3 resonance with LHS 1678 c. The host star is associated with an observed gap in the HR diagram tied to a change in M dwarf energy transport mechanisms. The effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. In aggregate, LHS 1678 an exciting playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars.

Files (2.5 MB)
Name Size
2.5 MB Download
  • Astudillo-Defru, N., Forveille, T., Bonfils, X., et al. 2017b, A&A, 602, A88, doi: 10.1051/0004-6361/201630153

  • Baraffe, I., & Chabrier, G. 2018, A&A, 619, A177, doi: 10.1051/0004-6361/201834062

  • Benedict, G. F., Henry, T. J., Franz, O. G., et al. 2016, AJ, 152, 141, doi: 10.3847/0004-6256/152/5/141

  • Carter, J. A., & Agol, E. 2013, ApJ, 765, 132, doi: 10.1088/0004-637X/765/2/132

  • Chen, J., & Kipping, D. 2017, ApJ, 834, 17, doi: 10.3847/1538-4357/834/1/17

  • Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, 2MASS All 1671 Sky Catalog of point sources.

  • Engle, S. G., & Guinan, E. F. 2018, Research Notes of the American Astronomical Society, 2, 34, doi: 10.3847/2515-5172/aab1f8

  • Foreman-Mackey, D. 2018, Research Notes of the American Astronomical Society, 2, 31, doi: 10.3847/2515-5172/aaaf6c

  • Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1, doi: 10.1051/0004-6361/201629272

  • Goldreich, P., & Schlichting, H. E. 2014, AJ, 147, 32, doi: 10.1088/0004-6256/147/2/32

  • Henry, T. J., Walkowicz, L. M., Barto, T. C., & Golimowski, D. A. 2002, AJ, 123, 2002, doi: 10.1086/339315

  • Hippke, M., & Heller, R. 2019a, A&A, 623, A39, doi: 10.1051/0004-6361/201834672

  • Huang, C. X., Vanderburg, A., Pál, A., et al. 2020a, Research 1754 Notes of the American Astronomical Society, 4, 204, doi: 10.3847/2515-5172/abca2e

  • Huang, C. X., Vanderburg, A., Pál, A., et al. 2020b, Research Notes of the American Astronomical Society, 1757 4, 206, doi: 10.3847/2515-5172/abca2d

  • Jao, W.-C., Henry, T. J., Gies, D. R., & Hambly, N. C. 2018, ApJL, 861, L11, doi: 10.3847/2041-8213/aacdf6

  • Jao, W.-C., Henry, T. J., Subasavage, J. P., et al. 2005, AJ, 129, 1954, doi: 10.1086/428489

  • Kempton, E. M. R., Bean, J. L., Louie, D. R., et al. 2018, PASP, 130, 114401, doi: 10.1088/1538-3873/aadf6f

  • Kostov, V. B., Mullally, S. E., Quintana, E. V., et al. 2019b, AJ, 157, 124, doi: 10.3847/1538-3881/ab0110

  • Kreidberg, L., Koll, D. D. B., Morley, C., et al. 2019, Nature, 573, 87, doi: 10.1038/s41586-019-1497-4

  • Kruse, E., Agol, E., Luger, R., & Foreman-Mackey, D. 2019, ApJS, 244, 11, doi: 10.3847/1538-4365/ab346b

  • Lightkurve Collaboration, Cardoso, J. V. d. M., Hedges, C., et al. 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library.

  • Morton, T. D. 2015, VESPA: False positive probabilities calculator.

  • Newton, E. R., Irwin, J., Charbonneau, D., et al. 2017, ApJ, 834, 85, doi: 10.3847/1538-4357/834/1/85

  • Pepe, F. A., Cristiani, S., Rebolo Lopez, R., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, 77350F, doi: 10.1117/12.857122

  • Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. 2016, PeerJ Computer Science, 2, e55

  • Suárez Mascareño, A., Faria, J. P., Figueira, P., et al. 2020, A&A, 639, A77, doi: 10.1051/0004-6361/202037745

  • Vanderburg, A., Latham, D. W., Buchhave, L. A., et al. 2016, ApJS, 222, 14, doi: 10.3847/0067-0049/222/1/14

  • Winters, J. G., Henry, T. J., Lurie, J. C., et al. 2015, AJ, 149, 5, doi: 10.1088/0004-6256/149/1/5

  • Zeng, L., Jacobsen, S. B., Sasselov, D. D., et al. 2019, Proceedings of the National Academy of Science, 116, 9723, doi: 10.1073/pnas.1812905116

All versions This version
Views 164164
Downloads 144144
Data volume 358.1 MB358.1 MB
Unique views 147147
Unique downloads 128128


Cite as