Conference paper Open Access
Silverstein, Michele L.;
Schlieder, Joshua E.;
Barclay, Thomas;
Hord, Benjamin J.;
Jao, Wei-Chun;
Vrijmoet, Eliot Halley;
Henry, Todd J.;
Cloutier, Ryan;
Kostov, Veselin B.;
Kruse, Ethan;
Winters, Jennifer G.;
Irwin, Jonathan;
Kane, Stephen R.;
Stassun, Keivan G.;
Huang, Chelsea;
Kunimoto, Michelle;
Tey, Evan;
Vanderburg, Andrew;
Collins, Karen A.;
Astudillo-Defru, Nicola;
Bonfils, Xavier
We present the LHS 1678 (TOI-696) exoplanet system: two nearly Earth-sized transiting planets detected by TESS and a likely brown dwarf orbiting a bright M2 dwarf at 19.9 pc. The ultra-short-period LHS 1678 b (0.70 Earth radii, 0.9-day orbit) is a captivating target for emission spectroscopy observations with the JWST. LHS 1678 c (0.98 Earth radii, 3.7-day orbit) is in the Venus-zone and may be Venus density: a promising target for greenhouse effect studies. Both planets are favorable targets for EPRV mass measurements and for JWST transmission spectroscopy observations to study their atmospheres. The substellar companion, detected via CTIO/SMARTS 0.9m astrometry, is on a decades-long orbit and may someday eclipse the host star, revealing a rare system architecture in which more and less massive objects orbit in the same plane. There is also a candidate third planet detected in TESS multi-cycle data in near 4:3 resonance with LHS 1678 c. The host star is associated with an observed gap in the HR diagram tied to a change in M dwarf energy transport mechanisms. The effect of the associated stellar astrophysics on exoplanet evolution is currently unknown. In aggregate, LHS 1678 an exciting playground for comparative exoplanet science and understanding the formation and evolution of small, short-period exoplanets orbiting low-mass stars.
Name | Size | |
---|---|---|
TESSSciCon2_Poster_Silverstein_LHS1678.pdf
md5:e1060d7cf8c89771242b7351ade98dbb |
2.5 MB | Download |
Astudillo-Defru, N., Forveille, T., Bonfils, X., et al. 2017b, A&A, 602, A88, doi: 10.1051/0004-6361/201630153
Baraffe, I., & Chabrier, G. 2018, A&A, 619, A177, doi: 10.1051/0004-6361/201834062
Benedict, G. F., Henry, T. J., Franz, O. G., et al. 2016, AJ, 152, 141, doi: 10.3847/0004-6256/152/5/141
Carter, J. A., & Agol, E. 2013, ApJ, 765, 132, doi: 10.1088/0004-637X/765/2/132
Chen, J., & Kipping, D. 2017, ApJ, 834, 17, doi: 10.3847/1538-4357/834/1/17
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003, 2MASS All 1671 Sky Catalog of point sources.
Engle, S. G., & Guinan, E. F. 2018, Research Notes of the American Astronomical Society, 2, 34, doi: 10.3847/2515-5172/aab1f8
Foreman-Mackey, D. 2018, Research Notes of the American Astronomical Society, 2, 31, doi: 10.3847/2515-5172/aaaf6c
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A&A, 595, A1, doi: 10.1051/0004-6361/201629272
Goldreich, P., & Schlichting, H. E. 2014, AJ, 147, 32, doi: 10.1088/0004-6256/147/2/32
Henry, T. J., Walkowicz, L. M., Barto, T. C., & Golimowski, D. A. 2002, AJ, 123, 2002, doi: 10.1086/339315
Hippke, M., & Heller, R. 2019a, A&A, 623, A39, doi: 10.1051/0004-6361/201834672
Huang, C. X., Vanderburg, A., Pál, A., et al. 2020a, Research 1754 Notes of the American Astronomical Society, 4, 204, doi: 10.3847/2515-5172/abca2e
Huang, C. X., Vanderburg, A., Pál, A., et al. 2020b, Research Notes of the American Astronomical Society, 1757 4, 206, doi: 10.3847/2515-5172/abca2d
Jao, W.-C., Henry, T. J., Gies, D. R., & Hambly, N. C. 2018, ApJL, 861, L11, doi: 10.3847/2041-8213/aacdf6
Jao, W.-C., Henry, T. J., Subasavage, J. P., et al. 2005, AJ, 129, 1954, doi: 10.1086/428489
Kempton, E. M. R., Bean, J. L., Louie, D. R., et al. 2018, PASP, 130, 114401, doi: 10.1088/1538-3873/aadf6f
Kostov, V. B., Mullally, S. E., Quintana, E. V., et al. 2019b, AJ, 157, 124, doi: 10.3847/1538-3881/ab0110
Kreidberg, L., Koll, D. D. B., Morley, C., et al. 2019, Nature, 573, 87, doi: 10.1038/s41586-019-1497-4
Kruse, E., Agol, E., Luger, R., & Foreman-Mackey, D. 2019, ApJS, 244, 11, doi: 10.3847/1538-4365/ab346b
Lightkurve Collaboration, Cardoso, J. V. d. M., Hedges, C., et al. 2018, Lightkurve: Kepler and TESS time series analysis in Python, Astrophysics Source Code Library. http://ascl.net/1812.013
Morton, T. D. 2015, VESPA: False positive probabilities calculator. http://ascl.net/1503.011
Newton, E. R., Irwin, J., Charbonneau, D., et al. 2017, ApJ, 834, 85, doi: 10.3847/1538-4357/834/1/85
Pepe, F. A., Cristiani, S., Rebolo Lopez, R., et al. 2010, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 7735, Ground-based and Airborne Instrumentation for Astronomy III, 77350F, doi: 10.1117/12.857122
Salvatier, J., Wiecki, T. V., & Fonnesbeck, C. 2016, PeerJ Computer Science, 2, e55
Suárez Mascareño, A., Faria, J. P., Figueira, P., et al. 2020, A&A, 639, A77, doi: 10.1051/0004-6361/202037745
Vanderburg, A., Latham, D. W., Buchhave, L. A., et al. 2016, ApJS, 222, 14, doi: 10.3847/0067-0049/222/1/14
Winters, J. G., Henry, T. J., Lurie, J. C., et al. 2015, AJ, 149, 5, doi: 10.1088/0004-6256/149/1/5
Zeng, L., Jacobsen, S. B., Sasselov, D. D., et al. 2019, Proceedings of the National Academy of Science, 116, 9723, doi: 10.1073/pnas.1812905116
All versions | This version | |
---|---|---|
Views | 164 | 164 |
Downloads | 144 | 144 |
Data volume | 358.1 MB | 358.1 MB |
Unique views | 147 | 147 |
Unique downloads | 128 | 128 |