Estudio in vitro sobre hongos solubilizadores de fósforo bajo diferentes fuentes de carbono y nitrógeno
Creators
- 1. Instituto Tecnológico Superior de Xalapa, Reserva Territorial SN, Col. Santa Bárbara, Xalapa, Veracruz, México
- 2. Facultad de Biología, Universidad Veracruzana, Campus Xalapa, Circuito Gonzalo Aguirre Beltrán s/n, CP. 91090, Zona Universitaria Xalapa, Veracruz, México
- 3. Instituto de Ecología, A.C., Carretera Antigua a Coatepec, No. 351., Col. El Haya, CP. 91070, Xalapa Veracruz, México
Description
RESUMEN
Antecedentes: Los hongos solubilizadores de fósforo juegan un papel muy importante en el ciclo del fósforo porque pueden transformarlo de insoluble a soluble; estos organismos dependen de los nutrientes del medio para su desarrollo y su actividad en los procesos biogeoquímicos. Objetivo: Evaluar a nivel in vitro la capacidad de tres cepas de hongos para solubilizar fosfato con diferentes fuentes de carbono y de nitrógeno y relacionar la solubilización con el pH del medio de cultivo y biomasa fúngica. Métodos: Las cepas utilizadas fueron Aspergillus niger, Penicillium brevicompactum y P. waksmanii, estas se inocularon con diferentes fuentes de carbono (arabinosa, fructosa y glucosa) y de nitrógeno (asparagina, sulfato de amonio y urea); como testigo se utilizó el medio sin carbono/nitrógeno. Cada tercer día se midió el fósforo soluble, el pH del medio de cultivo y la biomasa fúngica. Resultados y discusión: En los datos con las fuentes de carbono, la cepa de A. niger mostró una mayor solubilización en presencia de glucosa, mientras que para P. waksmanii y P. brevicompactum la mayor solubilización se presentó con fructosa. Respecto a las fuentes de nitrógeno, para A. niger, el sulfato de amonio favoreció una mayor solubilización, mientras que en P. brevicompactum y P. waksmanii fue el tratamiento con control (nitrógeno limitado). Mediante regresiones se detectó que en A. niger y P. brevicompactum con diferentes fuentes de carbono, que la capacidad de solubilizar fosfato tricálcico aumentó significativamente con la acidificación del medio de cultivo y con la biomasa fúngica. Sin embargo, para las tres cepas evaluadas en diferentes fuentes de nitrógeno, la actividad fosfato solubilizadora no se relacionó significativamente con el pH del medio de cultivo ni con la biomasa fúngica.
ABSTRACT
Background: Phosphorus solubilizing fungi are very important in the phosphorus cycle because they can transform it from insoluble to soluble. These organisms depend on the nutrients of the environment for their development and are active in biogeochemical processes. Objective: Evaluate in vitro the capacity of three strains of fungi to solubilize phosphate with different carbon and nitrogen sources and to relate the solubility with the pH of the culture medium and fungal biomass. Methods: The strains used were Aspergillus niger, Penicillium brevicompactum, and P. waksmanii, they were inoculated with carbon sources (arabinose, fructose, and glucose), and nitrogen sources (asparagine, ammonium sulfate, and urea); as a control, we used the medium without carbon/nitrogen. During a month, every third day, the soluble phosphorus, the pH in the culture medium, and the fungal biomass was measured. Results and discussion: Among the data with carbon sources, when the strain of A. niger grew with glucose, it presented the highest solubilization, while for P. waksmanii and P. brevicompactum, it was detected the highest solubilization when grown with fructose. Regarding the nitrogen sources, for A. niger, the growth with ammonium sulfate favored higher solubilization, while in P. brevicompactum and P. waksmanii, it was with the control treatment (limited nitrogen). By regression we detected that in A. niger and P. brevicompactum with different carbon sources, that the capacity to solubilize tricalcium phosphate significantly increased with the acidification of the culture medium and with the fungal biomass. However, for the three strains evaluated in different nitrogen sources, the solubilizing phosphate activity was not significantly related to the pH of the culture medium or to the fungal biomass.
Files
3) Arias Mota et al., 2021.pdf
Files
(505.9 kB)
Name | Size | Download all |
---|---|---|
md5:639a93249dbbc72d8858c7ac50a3b713
|
505.9 kB | Preview Download |
Additional details
Identifiers
Related works
- Is identical to
- Journal article: https://repositorioinstitucional.buap.mx/handle/20.500.12371/13526 (URL)
References
- Navarro G. Química agrícola: el suelo y los elementos químicos esenciales para la vida. Ediciones Mundi Prensa. Madrid. España 2003.
- Carlie M. J., Watkinson S. C. The Fungi. New York 1994.
- Coyne M. Microbiología del suelo: Un enfoque exploratorio. Paraninfo: Madrid. España 2000.
- Torriani-Gorini A., Yagil E., Silver S. Phosphate in microorganisms. American Society for Microbiology Press: Washington 1994.
- Sharma S. B., Sayyed R. Z., Trivedi M. H., Gobi T. A. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2013; 2:587
- Illmer P., Schinner F. Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 1992; 24:389-395.
- Kang S. C., Pandey P., Khillon R., Maheshwari D. K. Process of rock phosphate solubilization by Aspergillus sp. PS 104 in soil amended medium. J Environ Biol 2008; 29(5):743-746.
- Scervino J. M., Papinutti V. L., Godoy M. S., Rodríguez M. A., Della-Monica I., Recchi M., Pettinari M. J., Godeas A. M. Medium pH, carbon and nitrogen concentrations modulate the phosphate solubilization efficiency of Penicillium purpurogenum through organic acid production. J Appl Microbiol 2011;110: 1215-1223.
- Sharma K. Inorganic phosphate solubilization by fungi isolated from agriculture soil. J Phyto 2011; 3(4):11-12.
- Yasser M. M., Mousa A. S. M., Massoud O. N., Nasr S. H. Solubilization of inorganic phosphate solubilizing fungi isolated from Egyptian soils. J Biol Earth Sci 2014; 4(1): B83-B90.
- Gómez-Guiñán Y., Zabala M. Determinación de la capacidad solubilizadora del P en hongos aislados de la rizósfera del mani (Arachis hypogaea L.). Saber, Universidad de Oriente 2011; 13(1):8-13.
- Relwani L., Krishna P., Reddy M. S. Effect of carbon and nitrogen sources on phosphate solubilization by a wild-type strain and UV-induced mutants of Aspergillus tubingensis. Curr Microbiol 2008; 57:401–406.
- Stolp H. Microbial ecology: Organisms, habitats, activities. Cambridge. Cambridge University Press 1988.
- Griffin D. H. Fungal physiology. Wiley-Liss. New York 1994.
- Cooke R. C., Whipps J. H. Ecophysiology of the fungi. Blackwell 1993.
- Sundara R., Sinha M. Organisms phosphate solubilizers in soil. Soil Sci Plant Nutr 1963; 9(2):45-49.
- Clesceri S. L., Greenberg A. E., Trusell R. R. Métodos normalizados para el análisis de aguas potables y residuales. Díaz Santos. España 1992.
- StatSoft, Inc. Statistica para Windows v. 10.0. Data analysis software system. Tulsa. [cd-Rom] 2017.
- Saber W. I. A., Ghanem K. M., El-Hersh M. S. Rock phosphate solubilization by two isolates of Aspergillus niger and Penicillium sp. and their promotion to mungbean plants. Res J Microbiol 2009; 4(7): 235-250.
- Yadav J., Verma J. P., Tiwari K. N. Solubilization of tricalcium phosphate by fungus Aspergillus niger at different carbon source and salinity. Trends Appl Sci Res 2011; 6(6):606-613.
- Goldstein A. H. Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am J Altern Agric 1986; 1:51-57.
- Rashid M., Khalil S., Ayub N., Alam S., Latif F. Organic acids production and phosphate solubilization by phosphate solubilizing microorganism (PSM) under in vitro conditions. Pak J Biol Sci 2004; 7(2):187-196.
- Xu D. B., Madrid C. P., Röhr M., Kubicek C. P. The influence of type and concentration of the carbon source on production of citric acid by Aspergillus niger. Appl Microbiol Biotechnol 1983; 30:553–558.
- Jain R., Saxena J., Sharma V. Solubilización de fosfatos inorgánicos por Aspergillus awamori S19 aislado de suelo rizosférico de una región semiárida. Ann Microbiol 2012; 62: 725–735.
- Pradhan N., Sukla L. B. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. Afr J Biotechnol 2005; 5 (10):850-854.
- Narsian V., Patel H. H. Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem 2000; 32:559-565.
- Pandey A., Das N., Kumar B., Rinu K., Trivedi P. Phosphate solubilization by Penicillium spp. isolated from soil samples of Indian Himalayan region. World J Microbiol Biotechnol 2008; 24:97–102.
- Barroso C. B., Pereira G. T., Nahas E. Solubilization of CaHPO4 and AlPO4 by Aspergillus niger in culture media with different carbon and nitrogen sources. Braz J Microbiol 2006; 37:434-438.
- Seshadri S., Ignacimuthu S., Lakshminarasimhan C. Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains. Chem Eng Commun 2004; 191:1043-1052.
- Rinu K., Malviya M. K., Sati P., Tiwari S. C., Pandey A. Response of Cold-tolerant Aspergillus spp. to solubilization of Fe and Al phosphate in presence of different nutritional sources. Soil Sci Annu 2013; 1-10.
- Harinathan B., Sankaralingam S., Prabhu D., Shankar T. Screening and characterization of phosphate solubilizing bacterium Enterobacter cancerogenus isolated from rhizosphere soil of local weed plants. Int J Adv Sci Tech Res 2014; 1:721-735.
- Habte M., Osorio N. W. Effect of nitrogen form on the effectiveness of a phosphate-solubilizing fungus to dissolve rock phosphate. J Biofertil Biopestici 2012; 3(5):100012.
- Reyes I., Bernier L., Simard R. R., Antoun H. Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. Microb Ecol 1999; 28:281-290.
- Kristianses B., Charley R. C., Seviour B., Harvey L., Habeeb S., Smith J. E. Overproduction of metabolites by filamentous fungi. En: Krumphanzl V, Sikyta B, Vanek Z (Eds). Overproduction of microbial products. Academic Press: Londres 1982.
- Vrabl P., Fuchs V., Pichler B., Schinagl C. W., Burgstaller. Organic acid excretion in Penicillium ochrochloron increases with ambient pH. Front Microbiol 2012; 3 (121)1-10.
- Cunningham J. E., Kuiack C. Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 1992; 58(5):1451–1458.
- Gallmetzer M., Burgstaller W. Citrate efflux in glucose-limited and glucose-sufficient chemostat culture of Penicillium simplicissium. Antonie Van Leeuwenhoek 2001; 79: 81–87.
- Borie B. F., Quinteros Q. J., Aguilera S. M. Bioquímica de suelos derivados de cenizas volcánicas: lV. Solubilización de fosfatos por hongos del suelo. Agric Tec 1983; 43(4):371-376.
- Nahas E. Factors determining rock phosphate solubilization by microorganisms isolated form soil. World J Microbiol Biotechnol 1996; 12:567-572.