Published June 30, 2021 | Version v1
Journal article Open

Development of a technology of gas-flame application of powders to increase wear resistance and adhesion strength

  • 1. Al-Farabi Kazakh National University
  • 2. Yessenov University

Description

Every year, the world economy suffers enormous losses due to wear and corrosion of machine parts and equipment. With targeted preventive protection against wear and tear, these losses can be avoided. Along with the coating of new parts, this includes the restoration of worn parts. An effective method is the surfacing of materials with high performance properties. The quality of hardened parts depends on the properties of deposited material, so hardening material or alloy is selected taking into account the working environment of the part and the coating method.

Today there are many self-fluxing surfacing powder alloys based on nickel, copper and others, obtained by different methods.

The paper discusses the process of studying the gas-flame application of powders to increase wear resistance and adhesion strength. Experimental studies have been carried out to determine the optimal composition of the CrB2 master alloy introduced into the composition of the GP-Ir40 surfacing alloy. It has been found that to obtain the hardness of the deposited metal in the range of 450–600 HV, it is necessary to introduce CrB2 into the coating composition, within 10 % of the total mass. Thus, the strength of the alloy is increased by more than 54.41 HV. Tests for corrosion resistance in aggressive environments of hydrogen sulfide H2S, sulfuric acid H2SO4 were carried out. The wear resistance of ground pumps was evaluated, and the service life of wear-resistant ground pump parts made of the IChH28N2 alloy was determined.

The new developed self-fluxing surfacing powder material based on iron with a hardening additive will be used to restore machine and equipment parts operating under conditions of abrasive wear, corrosion and elevated temperatures or corrosive environments

Files

14-24.pdf

Files (3.0 MB)

Name Size Download all
md5:d18736e3630e77ec5280110dc7960d95
3.0 MB Preview Download

Additional details

References

  • Yermekov, D., Povetkin, V., Rutkuniene, Zh. (2020) Influence of corrosion environment on physical and chemical wearing of equipment parts with wear-resistant coating. Herald of the Kazakh - British Technical University, 2 (53), 15–21.
  • Kostitsyna, I. V., Tyurin, A. G., Parshukov, V. P., Birukov, A. I. (2012). Influence of chromium content, temperature and pressure CO2 on corrosion resistance of tubing. Vestnik YuUrGU. Seriya «Himiya», 13, 30–37.
  • GOST 21.602-2003. System of design documents for construction. Rules for execution of working documentation of heating, ventilation and air conditioning.
  • Zenin, B. S., Slosman, A. I. (2012). Sovremennye tekhnologii poverhnostnogo uprochneniya i naneseniya pokrytiy. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta, 120.
  • Kapsalamova, F. R., Kenzhaliev, B. K., Mironov, V. G., Shilov, G. T. (2016). Raspredelenie elementov v obeme poroshka sistemy Fe-Ni-Cr-Cu-Si-B-C v zavisimosti ot vremeni mekhanohimicheskogo legirovaniya. Kompleksnoe ispol'zovanie mineral'nogo syr'ya, 2, 64–68.
  • Topoljansky, P. A. (2004). Research of ion-plasma wear-resistant coating on tools. Metalloobrabotka, 1 (19), 24–30.
  • Korobov, Yu. S. (2016). Analiz svoystv gazotermicheskih pokrytiy. Ekaterinburg: Izd-vo Ural. un-ta.
  • Davis, J. R. (Ed.) (2005). Handbook of thermal spray technology. ASM International, 339.
  • Bartenev, S. S., Fed'ko, Yu. P., Grigorov, A. I. (1982). Detonatsionnye pokrytiya v mashinostroenii. Leningrad: Mashinostroenie, 214.
  • Kenzhaliev, B. K., Mironov, V. G., Shilov, G. T., Suleymenov, E. N. (2012). Pat. No. 27499 RK. Sposob polucheniya poroshkovogo naplavochnogo splava dlya gazotermicheskogo pokrytiya. opubl. 09.2012.
  • Goryachev, O. N., Tyuterev, V. V. (1995). Pat. No. 2038406 RF. Smes' dlya naneseniya pokrytiy. opubl. 27.06.1995.
  • Hoking, M. (2006). Metallicheskie i keramicheskie pokrytiya. Poluchenie, svoystva i primenenie. Moscow: Mir, 518.
  • Mirkin, L. I. (1979). Rentgenostrukturnyy kontrol' mashinostroitel'nyh materialov. Moscow: Mashinostroenie, 134.
  • Gorelik, S. S. (1970). Rentgenograficheskiy i elektronno-opticheskiy analiz. Moscow: Metallurgiya, 338.
  • Kulik, A. Ya., Borisov, Yu. S., Mnuhin, A. S., Nikitin, M. D. (1985). Gazotermicheskoe napylenie kompozitsionnyh poroshkov. Leningrad: Mashinostroenie, 199.
  • Popov, V. A., Zaytsev, V. A., Prosviryakov, A. S. et. al. (2010). Issledovanie protsessov mekhanicheskogo legirovaniya pri poluchenii kompozitsionnyh materialov s nanorazmernymi uprochnyayuschimi chastitsami. Nanostrukturirovannye materialy i fonktsional'nye pokrytiya, 1, 48–52.
  • Borisov, Yu. S., Borisova, A. L. et. al. (2010). Poluchenie poroshkov dlya gazotermicheskih pokrytiy metodami mekhanicheskogo sinteza i mekhanicheskogo legirovaniya. Svarochnoe proizvodstvo, 12, 18–21.
  • Lovshenko, G. F., Lovshenko, F. G., Hina, T. F. (2008). Vliyanie mekhanoaktivatsii na protsessy fazo i strukturooborudovaniya pri samorasprostranyayuschemsya vysokotemperaturnom sinteze. Novosibirsk, 168.
  • Seitkhanov, A., Povetkin, V., Bektibay, B., Tatybayev, M., Bukayeva, A. (2019). Improvement of the design of hydraulic transport devices for the transport of hydroabrasive media in the enrichment industry. Eastern-European Journal of Enterprise Technologies, 5 (1 (101)), 6–16. doi: https://doi.org/10.15587/1729-4061.2019.180791
  • Povetkin, V. V., Kerimzhanova, M. F., Orlova, E. P., Bukayeva, A. Z. (2018). Improvement of equipment for transport of slurry in mineral processing production. Mining Informational And Analytical Bulletin, 6, 161–169. doi: https://doi.org/10.25018/0236-1493-2018-6-0-161-169
  • Selamat, F. E., Iskandar, W. H., Saffuan, B. (2018). Design and Analysis of Centrifugal Pump Impeller for Performance Enhancement. Journal of Mechanical Engineering, SI 5 (2), 36–53.
  • Singh, R. R., Nataraj, M. (2014). Design and analysis of pump impeller using SWFS. World Journal of Modelling and Simulation, 10 (2), 152–160.
  • Zav'yalov, V. V. (2005). Problemy ekspluatatsionnoy nadezhnosti truboprovodov na pozdney stadii razrabotki mestorozhdeniy. Moscow: OAO «VNIIOENG», 332.
  • Rodionova, I. G., Zaytsev, A. I., Baklanova, O. N. (Eds.) (2005). Sb. tr. «Korrozionno-aktivnye nemetallicheskie vklyucheniya v uglerodistyh i nizkolegirovannyh stalyah». Moscow: Mettalurgizdat, 184.
  • Yao, Z., Wang, F., Qu, L., Xiao, R., He, C., Wang, M. (2011). Experimental Investigation of Time-Frequency Characteristics of Pressure Fluctuations in a Double-Suction Centrifugal Pump. Journal of Fluids Engineering, 133 (10). doi: https://doi.org/10.1115/1.4004959