Published July 8, 2021 | Version v1
Journal article Open

Sampling for vegetative propagation: A phytosanitary status survey of grapevines collection by One Step RT-PCR method

Creators

  • 1. Agricultural Technology Transfer Center Vlorё, Shamogjin, Vlorё Municipality

Description

Purpose. Grapevines (Vitis spp.) are affected by many viral diseases which cause serious pathological problems. GLRaV-3 is among the most widespread leafroll viruses, while Grapevine Fanleaf Virus (GFLV) is a destructive pathogen which reduces the lifespan of grapevine. Considering the impact and the spread of these diseases, our objective was to analyse the presence of these two viruses in several grapevine varieties in grapevine collection at ATTC Vlore. Data gathered from plant pathogens serve to better understand and prevent the spread of pathogens, as a mandatory rule for the quality control of certified plant material during vegetative propagation. Method. The presence of two common viruses were tested using virus specific primers; LC1/LC2 primer pair designed from the hHSP70 gene for detecting Grapevine Leafroll-associated Virus-3 (GLRaV3) and C3390/H2999 primer pair, designed from coat protein coding regions for detecting Grapevine Fanleaf Virus (GFLV), in six varieties; ‘Merlot’, ‘Kallmet’, ‘Shesh i zi’, ‘Shesh i bardhё’, ‘Debinё’, and ‘Pulёz’, provided through a randomised sampling procedure. One Step Reverse Transcription Polymerase Chain Reaction assay was used to detect the viral presence. Results showed a high (100%) prevalence of GLRaV3 virus in all of analysed samples, as the most frequent among the two pathogens. Analysis for of GFLV virus showed low infection rate, being present in only one sample. Conclusions. We herein show an efficient, fast and reproducible method for detecting grapevine viruses through one step RT-PCR. Our results suggest that sampling of the infected plant material should be avoided due to the presence of viral infections.

Files

236525-Article Text-543341-1-10-20210712.pdf

Files (874.3 kB)

Name Size Download all
md5:962e5fdd74c23c32f61f2de416510a3b
874.3 kB Preview Download