El origen, las características moleculares, el mecanismo de infección, la evasión de la inmunidad innata y adaptativa frente al SARS-CoV-2, la sintomatología y los marcadores moleculares de la COVID-19
- 1. Centro de Investigación en Ciencias Microbiológicas, Posgrado en Microbiología. Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, México
- 2. Departamento de Posgrado, Universidad Politécnica de Puebla, Puebla, México
Description
RESUMEN
El brote emergente de la enfermedad por coronavirus 2019 (COVID-19) causado por el coronavirus 2 del síndrome respiratorio agudo severo (SARS-CoV-2) que hasta la fecha se ha propagado por todo el mundo, ha causado preocupación en toda la sociedad, ya que en casos de pacientes críticos se detectó fallo multiorgánico como consecuencia de adquirir una infección por el SARS-CoV-2. Asimismo, a causa de esta emergencia sanitaria, por el alto número de casos y muertes reportadas por COVID-19, los gobiernos de los países donde se ha presentado esta enfermedad, han solicitado a los ciudadanos permanecer en sus hogares para disminuir el contagio. Esta situación ha afectado la vida diaria de la mayoría de los seres humanos por el aislamiento forzoso y, en consecuencia, también a la economía mundial dado que solo las empresas con actividades esenciales han podido continuar en operación. El objetivo de la presente revisión es dar a conocer información del origen del coronavirus emergente, sus características fisiológicas y moleculares, el mecanismo de infección del virus, la relación del SARS-CoV-2 con el receptor ACE2, la respuesta inmune innata y adaptativa del humano y la relación con el síndrome de liberación de citoquinas. También, comparar diversos estudios publicados, con la finalidad de obtener el consenso en la sintomatología presentada en pacientes de gravedad, con la COVID-19, en diversos órganos humanos y la determinación de elementos inmunológicos que se reportan como biomarcadores moleculares para obtener un pronóstico más rápido y eficiente de la respuesta de un paciente con la COVID-19.
ABSTRACT
The emerging outbreak of coronavirus disease 2019 (COVID-19) caused by the virus of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that to date has spread worldwide, has caused concern throughout society, because there were reported cases of COVID-19 critical patients with multiorgan failure as a consequence of acquiring a SARS-CoV-2 infection. Likewise, a cause of this health emergency, due to the high number of cases and deaths reported by COVID-19, the governments of the countries where this disease has occurred, asked citizens to stay in their homes to reduce the transmission. This situation has affected the daily life of the majority of human beings due to isolation due to the current pandemic and consequentlythe world economy has been affected, because only companies with essential activities have been able to continue in operation. This review aims to provide information on the origin of the emerging coronavirus, the physiological and molecular characteristics, the mechanism of virus infection, the relationship of SARS-CoV-2 with the ACE2 receptor, the innate and immune response of humans and the relationship with cytokine release syndrome. Also, various published studies were compared to obtain a consensus on the symptoms presented in COVID-19 patients in various human organs and the determination of immunological elements, which are reported as molecular biomarkers to obtain a faster and more efficient prognosis and the response of a COVID-19 patient.
Files
8 Gamboa y cols. Editado.pdf
Files
(1.1 MB)
Name | Size | Download all |
---|---|---|
md5:d2ad10aa7b617588f932ccf5f1625998
|
1.1 MB | Preview Download |
Additional details
Identifiers
Related works
- Is identical to
- Journal article: https://repositorioinstitucional.buap.mx/handle/20.500.12371/9409 (URL)
References
- Fiorino S, Zippi M, Gallo C, Sifo D, Sabbatani S, Manfredi R, Leandri P. The rationale for a multi-step therapeutic approach based on antivirals and drugs with immunomodulatory activity in patients with coronavirus-SARS2-induced disease of different severity. Preprint. 2020:1-18.
- Vellingiri B, Jayaramayya K, Iyer M, Narayanasamy A, Govindasamy V, Giridharan B, Ganesan S Venugopal A, Venkatesan D, Ganesan H, Rajagopalan K, Rahman PKSM, Cho SG, Kumar NS, Subramaniam MD. COVID-19: A promising cure for the global panic. Sci Total Environ. 2020; 725:1-19.
- Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges. International journal of antimicrobial agents. 2020; 55 (3): 1-9.
- Smith TR, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Xu Z. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020; 11(1):1-13.
- Rosales-Mendoza S. Will plant-made biopharmaceuticals play a role in the fight against COVID-19?. Expert Opin Biol Ther. 2020; 20(6):545–548.
- Block P, Hoffman M, Raabe IJ, Dowd JB, Rahal C, Kashyap R, Mills MC. Social network-based distancing strategies to flatten the COVID-19 curve in a post-lockdown world. Nat. Hum. Behav. 2020; 4:588–596.
- Ling CQ. Traditional Chinese medicine is a resource for drug discovery against 2019 novel coronavirus (SARS-CoV-2). J Integr Med. 2020; 18(2):87–88.
- Base de datos de COVID-19, Vaccine & Therapeutics Tracker. Revisado el 15 de junio 2020.
- Gresham, G. ClinicalTrials. gov. Princ and Pract Clin Trials. 2020:1-18.
- Base de datos de la OMS, Draft landscape of COVID-19 candidate vaccines. Revisado el 13 de agosto 2020.
- Millán-Oñate J, Rodriguez-Morales AJ, Camacho-Moreno G, Mendoza-Ramírez H, Rodríguez-Sabogal IA, Álvarez-Moreno CA. New emerging zoonotic virus of concern: the 2019 novel coronavirus (SARS CoV-2). Infectio. 2020; 24(3):187-192.
- Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Xiang Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020; 11(1):1-12.
- Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol. 2020; 30(7):1346-1351.
- Saitou N. and Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. 1987; 4:406-425.
- Zuckerkandl E. and Pauling L. Evolutionary divergence and convergence in proteins. Edited in Evolving Genes and Proteins by V. Bryson and H.J. Vogel. 1965;. 97-166.
- Kumar S., Stecher G., Li M., Knyaz C., and Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution. Academic Press, New York. 2018; 35:1547-1549.
- Base de datos de NCBI. Revisado el 13 de agosto.
- Han GZ. Pangolins Harbor SARS-CoV-2-Related Coronaviruses. Trends Microbiol. 2020;28(7):515-517.
- Lam TT, Jia N, Zhang YW, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature.2020;583(7815):282-285.
- Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. J Adv Res. 2020:24:91-98.
- Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 2020:1-5.
- Base de datos de I-Tisser, revisado en 9 de julio del 2020.
- Michalska K, Kim Y, Jedrzejczak R, Maltseva NI, Stols L, Endres M, Joachimiak A. Crystal structures of SARS-CoV-2 ADP-ribose phosphatase (ADRP): from the apo form to ligand complexes. bioRxiv. 2020:1-24.
- Jin Z, Du X, Xu Y, Deng Y, Liu M, Zhao Y, Duan Y. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020; 582:1-24.
- Gao Y, Yan L, Huang Y, Liu F, Zhao Y, Cao L, Ge J. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Sci. 2020; 368(6492):779-782.
- Ferron F, Subissi L, Silveira De Morais AT, Le N, Sevajol M, Gluais L, et al. Structural and molecular basis of mismatch correction and ribavirin excision from coronavirus RNA. Proceedings of the National Academy of Sciences of the United States of America. 2018; 115(2): E162–E171.
- Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020; 181(2):81-292.
- Grant O.C., Montgomery D., Ito K., Woods R.J. 3D Models of glycosylated SARS-CoV-2 spike protein suggest challenges and opportunities for vaccine development. Biorxiv. 2020:1-17.
- Base de datos de UniProt (UniProt). (Accessed on: July 9, 2020).
- Alanagreh LA, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020; 9(5):1-11.
- Ansede M, Galocha A y Zafra M. The 12 letters that changed the world. El pais. Revisado en 7-2020.
- Perkel JM. The software that powers scientific illustration. Nature. 2020; 582 (7810):137-138.
- Base de datos de: BioRender.com, accesado 2 de agosto 2020.
- Coronavirus Replication Cycle", by BioRender.com (2020).
- Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: suggested effects of azithromycin and stem cell engagement. Stem Cell Rev Rep. 2020:1-7.
- Guo H, Li R, Zucker S, Toole BP. EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res. 2020; 60(4):888-891.
- Wang K, Chen W, Zhou YS, Lian J Q, Zhang Z, Du P, Wang B. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. BioRxiv.2020; 1-10.
- Gabarre P, Dumas G, Dupont T, Darmon M, Azoulay E, Zafrani L. Acute kidney injury in critically ill patients with COVID-19. Intensive Care Med. 2020:1-10.
- Perlot T, Penninger JM. ACE2–From the renin–angiotensin system to gut microbiota and malnutrition. Emerg Microbes Infect. 2013; 15(13): 866-873.
- Vabret N, Britton GJ, Gruber C, Hegde S, Kim J, Kuksin M, Pia L. Immunology of COVID-19: current state of the science. Immunity. 2020; 52: 910-941.
- Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction, and proposed neurotropic mechanisms. ACS Chem Neurosci. 2020; 11(7):995-998.
- Soler MJ, Lloveras J, Batlle D. Enzima conversiva de la angiotensina 2 y su papel emergente en la regulación del sistema renina-angiotensina. Medicina Clínica. 2008; 131(6):230-236.
- Jiang F., Yang J., Zhang Y., Dong M., Wang S., Zhang Q. et al. Angiotensin-converting enzyme 2 and angiotensin 1-7: novel therapeutic targets. Nature Reviews Cardiology. 2014; 11(7):p. 413-426.
- Vaduganathan M., Vardeny O., Michel T., McMurray J.J.V., Pfeffer M.A.A, Scott D. Solomon, Renin–Angiotensin–Aldosterone System Inhibitors in Patients with COVID-19, New England J Med 2020; 382:1653-1659.
- D'Ardes D, Boccatonda A, Rossi I, Guagnano MT, Santilli F, Cipollone F, Bucci, M. COVID-19 and RAS: unravelling an unclear relationship. Int J Mol Sci. 2020;21(8): 1-8.
- Park A, Iwasaki A. Type I and type III interferons–induction, signaling, evasion, and application to combat COVID-19. Cell Host Microbe. 2020; 24(10):870-878.
- Ye Z, Zhang Y, Wang Y, Huang Z, Song B. Chest CT manifestations of new coronavirus disease 2019 (COVID-19): a pictorial review. Eur Radiol. 2020; 30:4381–4389.
- Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiol. Mol Biol Rev. 2012; 76(1):16-32.
- Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Yuan, Z. Reduction, and functional exhaustion of T cells in patients with coronavirus disease 2019 (COVID-19). Front Immunol, 2020;11(827):1-7.
- Huang KJ, Su I.J, Theron M, Wu Y C, Lai SK, Liu CC, Lei HY. An interferon‐γ‐related cytokine storm in SARS patients. J Med Virol. 2005; 75(2):185-194.
- Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID‐19) infected patients. Br J Haematol. 2020; 189: 428–437.
- Yoshio T, Okamoto H, Kurasawa K, Dei Y, Hirohata S, Minota S. IL-6, IL-8, IP-10, MCP-1 and G-CSF are significantly increased in cerebrospinal fluid but not in sera of patients with central neuropsychiatric lupus erythematosus. Lupus. 2016; 25(9):997-1003.
- Baig AM. Neurological manifestations in COVID‐19 caused by SARS‐CoV‐2. CNS Neurosci. 2020; 26(5):499–501.
- Wadman M, Couzin-Frankel J, Kaiser J, Matacic C. How does coronavirus kill. Ferocious rampage through the body, from brain to toes. 2020:1502-1503.
- Willyard C. Coronavirus blood-clot mystery intensifies. Nature. 2020 (581): 250.
- Zhang Y, Xiao M, Zhang S, Zhang S, Li Y. et al. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N Engl J Med. 2020:382:385.
- Zhang L, Yan X, Fan Q, Liu H, Liu X, Liu Z, Zhang Z. D-dimer levels on admission to predict in-hospital mortality in patients with COVID-19. JTH. 2020; 18(6):1324–1329.
- Pan F, Ye T, Sun P, Gui S, Liang B, Li L, Zheng C. Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia. Radiol. 2020; 295:715–721.
- Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, LI C. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol. 2020; 55(6):1-5.
- Poggiali E, Dacrema A, Bastoni D, Tinelli V, Demichele E, Mateo Ramos P, Magnacavallo A. Can lung US help critical care clinicians in the early diagnosis of novel coronavirus (COVID-19) pneumonia? Radiology. 2020;295(3): E6-E6.
- Mongodi S, Pozzi M, Orlando A, Bouhemad B, Stella A, Tavazzi G, Mojoli F. Lung ultrasound for daily monitoring of ARDS patients on extracorporeal membrane oxygenation: preliminary experience. Intensive Care Med. 2018; 44(1):123-124.
- Schmulson M, Dávalos MF, Berumen J. Alerta: los síntomas gastrointestinales podrían ser una manifestación de la COVID-19. Rev Gastroenterol Mex. 2020:1-7.
- Lamers MM, Beumer J, van der Vaart J, Knoops K, Puschhof J, Breugem TI, Van Donselaar E. SARS-CoV-2 productively infects human gut enterocytes. Science. 2020; 369(6499):50-54.
- Viguera ME. ¿Que seamos más o menos vulnerables al SARS-CoV-2 depende de nuestros genes? Universidad de Málaga. Revisado el 19 de junio 2020.
- Ferreira CM, Vieira AT, Vinolo MA R, Oliveira FA, Curi R, Martins FDS. The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res. 2014:1-13.
- Michel Aceves RDJ, Izeta Gutiérrez AC, Torres Alarcón G, Michel Izeta ACM. The human intestinal microbiota and microbiome. (Between the keys of the kingdom and a new Pandora's Box). Rev san mil. 2018; 71(5):443-448.
- Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012; 336(6086):1268-1273.
- Kato LM, Kawamoto S, Maruya M, Fagarasan S. The role of the adaptive immune system in regulation of gut microbiota. Immunol Rev. 2014; 260(1):67-75.
- Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut microbes. 2012; 3(1):4-14.
- Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol. 2017; 461–463.
- Geuking MB, Köller Y, Rupp S, McCoy KD. The interplay between the gut microbiota and the immune system. Gut microbes. 2014; 5(3):411-418.
- McIlroy JR, Mullish BH, Goldenberg SD, Ianiro G, Marchesi JR. Intestinal microbiome transfer, a novel therapeutic strategy for COVID-19 induced hyperinflammation?: In reply to, COVID-19: Immunology and treatment options, Felsenstein, Herbert McNamara et al. 2020. Clin Immunol (Orlando, Fla.). 2020; 218:1-2.
- He Y, Wang J, Li F, Shi, Y. Main clinical features of COVID-19 and potential prognostic and therapeutic value of the microbiota in SARS-CoV-2 infections. Front Microbiol. 2020; 11:1-7.
- Dhar D, & Mohanty A. Gut microbiota and Covid-19- possible link and implications. Virus Research. 2020; 285:1-5.
- Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020; 5(5): 428-430.
- Cao M, Zhang D, Wang Y, Lu Y, Zhu X, Li Y, Yang Z. Clinical features of patients infected with the 2019 novel coronavirus (COVID-19) in Shanghai, China. MedRxiv.2020:1-30.
- Chen D, Li X, Song Q, Hu C, Su F et al. Hypokalemia and Clinical Implications in Patients with Coronavirus Disease 2019 (COVID-19) medRxiv. 2020: 1-22.
- Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, Xu G. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney int. 2020; 97(5):829-838.
- Wang L, Li X, Chen H, Yan S, Li D, Li Y, Gong Z. Coronavirus disease 19 infection does not result in acute kidney injury: an analysis of 116 hospitalized patients from Wuhan, China. Am J Nephrol. 2020; 51(5):343-348.
- Anti-2019-nCoV Volunteers, Li Z, Wu M et al. Caution on kidney dysfunctions of 2019-nCoV patients. MedRxiv 2020; Publicado online el 27 de marzo 2020. Accessed on: July 10, 2020.
- Kim J, Thomsen T, Sell N, Goldsmith AJ. Abdominal and testicular pain: An atypical presentation of COVID-19. J Emerg Med. 2020; (20):30194-7.
- Ma L, Xie W, Li D, Shi L, Mao Y, Xiong Y, Zhang M. Effect of SARS-CoV-2 infection upon male gonadal function: A single center-based study. MedRxiv. 2020:1-14.
- Wang S, Zhou X, Zhang T. et al. The need for urogenital tract monitoring in COVID-19. Nat Rev Urol. 2020; 17:314–315.
- Pan F, Xiao X, Guo J, Song Y, Li H, Patel DP, Li PS. No evidence of SARS-CoV-2 in semen of males recovering from COVID-19. Fertil Steril. 2020; 113(6):1135–1139.
- Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008; 82(15):7264-7275.
- Giorgianni A, Vinacci G, Agosti E, Cariddi LP, Mauri M, Baruzzi F, Versino, M. Transient acute-onset tetraparesis in a COVID-19 patient. Spinal Cord. 2020; 1-3.
- Zanin L, Saraceno G, Panciani PP. et al. SARS-CoV-2 can induce brain and spine demyelinating lesions. Acta Neurochir. 2020; 62:1491–1494.
- Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. MedRxiv. 2020:1-7.
- Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci. 2020; 419:1-4.
- Litin SC. Clínica Mayo: libro de la salud familiar. Trillas: México 2005.
- Marino C, Dalakas, MD. Guillain-Barre syndrome: The first documented COVID-19–triggered autoimmune neurologic disease. Neurol Neuroimmunol Neuroinflamm. 2020; 7(5):1-8.
- Leonhard SE, Mandarakas MR, Gondim FA, Bateman K, Ferreira ML, Cornblath DR, Kusunoki S. Diagnosis and management of Guillain–Barré syndrome in ten steps. Nat Rev Neurol. 2019; 15(11): 671-683.
- Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Sci. 2020; 367(6485): 1444-1448.
- Zhou Y, Fu B, Zheng X, Wang D, Zhao C, Qi Y, Wei H. Aberrant pathogenic GM-CSF+ T, cells and inflammatory CD14+, CD16+ monocytes in severe pulmonary syndrome patients of a new coronavirus. BioRxiv. 2020:1-10.
- Liu T, Zhang J, Yang Y, Ma H, Li Z, Zhang J, Cheng J, Zhang X, et al. The role of interleukin-6 in monitoring severe case of coronavirus disease 2019. EMBO Mol Med. 2020:1-12.
- Fogarty H, Townsend L, Ni Cheallaigh C, Bergin C, Martin‐Loeches I, Browne P, Ryan K. COVID-19 coagulopathy in Caucasian patients. Br J Haematol. 2020;189; 1044–1049.
- Poor HD, Ventetuolo CE, Tolbert T, Chun G, Serrao G, Zeidman A, Dangayach, NS, Olin, J, Kohli-Seth R, Powell CA. COVID-19 Critical Illness Pathophysiology Driven by Diffuse Pulmonary Thrombi and Pulmonary Endothelial Dysfunction Responsive to Thrombolysis. medRxiv. 2020:1-14.
- Fei J, Fu L, Li Y, Xiang HX, Xiang Y, Li MD, Liu FF, Xu DX, Zhao H. Reduction of lymphocyte at early stage elevates severity and death risk of COVID-19 patients: a hospital-based case-cohort study. medRxiv 2020:1-28.
- Liu Y, Li J, Liu D, Song H, Chen C, Lv M, Pei X, Hu Z. Clinical features and outcomes of 2019 novel coronavirus-infected patients with cardiac injury. medRxiv. 2020g; 1-17.
- Liu J, Liu Y, Xiang P, Pu L, Xiong H, Li C, Zhang M, Tan J, Xu Y, Song R, et al. Neutrophil-to-lymphocyte ratio predicts critical illness patients with 2019 coronavirus disease in the early stage. J Transl Med. 2020; 18(206):1-12.
- Feng, S, Shen C, Xia N, Song W, Fan M, Cowling BJ. Rational use of face masks in the COVID-19 pandemic. Lancet Respir Med. 2020;8(5):434-436.
- Gutiérrez-Ortiz C, Méndez A, Rodrigo-Rey S, San Pedro-Murillo E, Bermejo-Guerrero L, Gordo-Mañas R, Benito-León J. Miller Fisher Syndrome and polyneuritis cranialis in COVID-19. Neurol. 2020: 1-15.
- Sinha P, Matthay MA, Calfee CS. Is a "Cytokine Storm" Relevant to COVID-19? JAMA Intern Med.2020:1-3.
- Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Zhang X. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Investig. 2020; 130(5):1-1.
- Gong J, Dong H, Xia SQ, Huang YZ, Wang D, Zhao Y, Lu F. Correlation analysis between disease severity and inflammation-related parameters in patients with COVID-19 pneumonia. MedRxiv. 2020:1-17.
- Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, Dong L. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020; 6(1):1-18.
- Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020: 1-19.
- Zuo Y, Yalavarthi S, Shi H, Gockman K, Zuo M, Madison JA., Woods RJ. Neutrophil extracellular traps (NETs) as markers of disease severity in COVID-19. medRxiv. 2020: 1-23.
- Mozzini C, Girelli D. The role of Neutrophil Extracellular Traps in Covid-19: Only an hypothesis or a potential new field of research? Thromb Res. 2020; 191:26-27.
- Middleton EA., He XY, Denorme F, Campbell RA., Ng D, Salvatore SP, Cody MJ. Neutrophil Extracellular Traps (NETs) Contribute to Immunothrombosis in COVID-19 Acute Respiratory Distress Syndrome. Blood. 2020.
- Yipp BG, Kubes P. NETosis: how vital is it?. Blood. 2013; 122(16):2784-2794.