Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published September 2, 2020 | Version v1
Journal article Open

La terapia antivirulencia como una estrategia contra bacterias multidrogo-resistentes

  • 1. Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala s/n Col. Santo Tomás C.P. 11340, Alc. Miguel Hidalgo, Ciudad de México, México

Description

RESUMEN

El incremento en la aparición de cepas bacterianas resistentes a los antibióticos de elección para su tratamiento se ha convertido en un problema de salud mundial que ha sido reconocido por la OMS y que debe ser atendido inmediatamente. De no hacerlo se corre el riesgo de que la humanidad llegue al punto en el que tratamiento de infecciones bacterianas con los antibióticos convencionales no será posible. Se estima que este problema se convertirá en una de las principales causas de muertes para el año 2050 y que, si no se actúa pronto desarrollando nuevas estrategias para evitarlas, estas estadísticas se volverán reales. En este trabajo se resumen los mecanismos de resistencia y se abordan algunas alternativas para tratarlo. Nos hemos enfocado en la terapia antivirulencia por considerarla como factible auxiliar en el problema de la multidrogo-resistencia bacteriana. Esta tiene como característica inhibir o bloquear a los factores de virulencia de bacterias patógenas sin interferir en procesos esenciales para la viabilidad bacteriana.

 

ABSTRACT

The increase in the emergence of bacterial strains resistant to antibiotics commonly used for their treatment has become a global health problem that has been recognized by the WHO and that must be addressed immediately. Not doing it implies that humanity might arrive to a point in which the treatment of bacterial infections with conventional antibiotics would not be possible any more. It is estimated that this problem will become one of the main causes of death by 2050 and that, if previsions are not taken with new strategies to avoid them, these statistics may become real. In this work we resume the bacterial resistance mechanisms and some alternatives for their treatment are considered. Here we focused on the antivirulence therapy because we believe as a feasible auxiliary in the treatment of multidrug resistant bacteria. This one has as a main feature to inhibit or block the expression of virulence factors present in pathogenic bacteria without interfering in essential processes for bacterial viability.

Files

7 Sedillo e Ibarra Editado.pdf

Files (564.6 kB)

Name Size Download all
md5:b81bb80fc3a7059a25c303bf3305a971
564.6 kB Preview Download

Additional details

Related works

References

  • Mulvey MR, Simor AE. Antimicrobial resistance in hospitals: how concerned should we be?. CMAJ. 2009;180(4):408–415.
  • Meek RW, Vyas H, Piddock LJ. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?. PLoS Biol. 2015;13(10):e1002266.
  • O´Neill, J. Antimicrobial resistance: Tackilng a crisis for the health and wealth of nations. Rev. Antimicrobial Resistance 2014, 1 (1): 1-16.
  • Organización Mundial de la Salud: Sistema mundial de vigilancia de la resistencia a los antimicrobianos. (Accessed on: March 23,2020)
  • Organización Mundial de la Salud: Lista de patógenos prioritarios resistentes a los antibióticos. (Accessed on: April 27, 2020)
  • Clartworthy, A., Pierson, E., & Hung, D. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol 2007, 3 (9), 541-548.
  • Gill EE, Franco OL, Hancock RE. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens. Chem Biol Drug Des. 2015;85(1):56–78.
  • Public Health England. English Survellance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2018. United Kingdom: Pulic Health England.
  • Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol. 2010;8(4):260–271.
  • Martinez JL, Fajardo A, Garmendia L, et al. A global view of antibiotic resistance. FEMS Microbiol Rev. 2009;33(1):44–65.
  • Alekshun MN, Levy SB. Molecular mechanisms of antibacterial multidrug resistance. Cell. 2007;128(6):1037–1050.
  • Zhou G, Shi QS, Huang XM, Xie XB. The Three Bacterial Lines of Defense against Antimicrobial Agents. Int J Mol Sci. 2015;16(9):21711–21733.
  • Mah TF, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9(1):34–39.
  • Flemming HC, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–633.
  • Flemming HC, Neu TR, Wozniak DJ. The EPS matrix: the "house of biofilm cells". J Bacteriol. 2007;189(22):7945–7947.
  • Abdallah M, Benoliel C, Drider D, Dhulster P, Chihib NE. Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Arch Microbiol. 2014;196(7):453‐472.
  • Renner LD, Weibel DB. Physicochemical regulation of biofilm formation. MRS Bull. 2011;36(5):347–355.
  • Stewart PS, Roe F, Rayner J, et al. Effect of catalase on hydrogen peroxide penetration into Pseudomonas aeruginosa biofilms. Appl Environ Microbiol. 2000;66(2):836–838.
  • Paulsen IT. Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol. 2003;6(5):446–451.
  • Murakami S, Nakashima R, Yamashita E, Yamaguchi A: Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002, 419:587-593. Li J, Xie S, Ahmed S, et al. Antimicrobial Activity and Resistance: Influencing Factors. Front Pharmacol. 2017;8:364.
  • Elufisan T. O. (2012). Updates on microbial resistance to drugs. African Journal of Microbiology Research, 6(23).
  • Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Annu Rev Biochem. 2018;87:451‐478.
  • Conly J, Johnston B. Where are all the new antibiotics? The new antibiotic paradox. Can J Infect Dis Med Microbiol. 2005;16(3):159‐160.
  • Gill, E. E., Franco, O. L., & Hancock, R. E. W. (2014). Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens. Chemical Biology & Drug Design, 85(1), 56–78.
  • Reina J, Reina N. Fagoterapia ¿una alternativa a la antibioticoterapia? [Phage therapy, an alternative to antibiotic therapy?)]. Rev Esp Quimioter. 2018;31(2):101‐104.
  • Reardon S. Phage therapy gets revitalized. Nature 2014; 510:15-6.
  • Vicente M, Hodgson J, Massidda O, Tonjum T, Henriques-Normark B, Ron EZ. The fallacies of hope: will we discover new antibiotics to combat pathogenic bacteria in time?. FEMS Microbiol Rev. 2006;30(6):841–852.
  • Silva LN, Zimmer KR, Macedo AJ, Trentin DS. Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev. 2016;116(16):9162–9236.
  • Rasko DA, Sperandio V. Anti-virulence strategies to combat bacteria-mediated disease. Nat Rev Drug Discov. 2010;9(2):117–128.
  • Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat Chem Biol. 2007;3(9):541‐548.
  • Kato J, Dey S, Soto JE, et al. A protein secreted by the Salmonella type III secretion system controls needle filament assembly. Elife. 2018;7:e35886.
  • Cornelis GR, Van Gijsegem F. Assembly and function of type III secretory systems. Annu Rev Microbiol. 2000;54:735–774.Rosqvist R, Håkansson S, Forsberg A, Wolf-Watz H. Functional conservation of the secretion and translocation machinery for virulence proteins of yersiniae, salmonellae and shigellae. EMBO J. 1995;14(17):4187–4195.
  • Blocker A, Jouihri N, Larquet E, et al. Structure and composition of the Shigella flexneri "needle complex", a part of its type III secreton. Mol Microbiol. 2001;39(3):652–663.
  • Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 1998;62(2):379–433.
  • Guo, Z., Li, X., Li, J., Yang, X., Zhou, Y., Lu, C., & Shen, Y. (2016). Licoflavonol is an inhibitor of the type three secretion system of Salmonella enterica serovar Typhimurium. Biochemical and Biophysical Research Communications, 477(4), 998–1004.
  • Chilcott GS, Hughes KT. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol Mol Biol Rev. 2000;64(4):694–708.
  • Iyoda S, Kamidoi T, Hirose K, Kutsukake K, Watanabe H. A flagellar gene fliZ regulates the expression of invasion genes and virulence phenotype in Salmonella enterica serovar Typhimurium. Microb Pathog. 2001;30(2):81–90.
  • Saini S, Slauch JM, Aldridge PD, Rao CV. Role of cross talk in regulating the dynamic expression of the flagellar Salmonella pathogenicity island 1 and type 1 fimbrial genes. J Bacteriol. 2010;192(21):5767–5777.
  • Negrea, A., Bjur, E., Ygberg, S. E., Elofsson, M., Wolf-Watz, H., & Rhen, M. (2007). Salicylidene Acylhydrazides That Affect Type III Protein Secretion in Salmonella enterica Serovar Typhimurium. Antimicrobial Agents and Chemotherapy, 51(8), 2867–2876.
  • Bjarnsholt, T., Ciofu, O., Molin, S., Givskov, M., & Høiby, N. (2013). Applying insights from biofilm biology to drug development — can a new approach be developed? Nature Reviews Drug Discovery, 12(10), 791–808.
  • Jagnow J, Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology. 2003;149(Pt 9):2397–2405.
  • Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol. 2008;10(3):685–701.
  • Alcántar-Curiel MD, Blackburn D, Saldaña Z, et al. Multi-functional analysis of Klebsiella pneumoniae fimbrial types in adherence and biofilm formation. Virulence. 2013;4(2):129–138.
  • Boddicker JD, Anderson RA, Jagnow J, Clegg S. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun. 2006;74(8):4590–4597.
  • Coque TM, Baquero F, Canton R. Increasing prevalence of ESBL-producing Enterobacteriaceae in Europe [published correction appears in Euro Surveill. 2008 Nov 27;13(48). pii: 19051]. Euro Surveill. 2008;13(47):19044.
  • Bjarnsholt T, Ciofu O, Molin S, Givskov M, Høiby N. Applying insights from biofilm biology to drug development - can a new approach be developed?. Nat Rev Drug Discov. 2013;12(10):791–808.
  • Clinicaltrials. (2017, Enero 23). Adjunctive Therapeutic Treatment With Human Monoclonal Antibody AR-105 (Aerucin®) in P. Aeruginosa Pneumonia. (N. L. Medicine, Editor) Marzo 2020, from Clinicaltrials
  • Camilli A, Bassler BL. Bacterial small-molecule signaling pathways. Science. 2006;311(5764):1113–1116.
  • Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR. Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev. 2011;111(1):28–67.
  • Thoendel M, Kavanaugh JS, Flack CE, Horswill AR. Peptide signaling in the staphylococci. Chem Rev. 2011;111(1):117–151.
  • Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.
  • Geske GD, O'Neill JC, Blackwell HE. Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chem Soc Rev. 2008;37(7):1432-1447.
  • Mellini M, Di Muzio E, D'Angelo F, et al. In silico Selection and Experimental Validation of FDA-Approved Drugs as Anti-quorum Sensing Agents. Front Microbiol. 2019;10:2355.
  • Murray AK. The Novel Coronavirus COVID-19 Outbreak: Global Implications for Antimicrobial Resistance. Front Microbiol. 2020;11:1020.