Published May 21, 2020 | Version v1
Journal article Open

Papel biológico de genes ubicados en una isla genómica en Pseudomonas aeruginosa

  • 1. Departamento de Bioquímica y Biología Molecular II, Facultad de Farmacia, Universidad de Granada, Granada, España
  • 2. Departamento de Farmacología, Facultad de Farmacia, Universidad de Granada, Granada, España

Description

RESUMEN

Pseudomonas aeruginosa es un patógeno humano oportunista Gram negativo omnipresente que no se considera parte de la microbiota intestinal comensal humana. Sin embargo, el agotamiento de la microbiota intestinal (disbiosis) después del tratamiento con antibióticos facilita la colonización del tracto intestinal por P. aeruginosa resistente a múltiples fármacos. Una posible alternativa a los tratamientos convencionales se basa en el uso de alimentos funcionales con actividad prebiótica. El efecto bifidogénico de fructooligosacáridos (FOS) está bien establecido, se ha demostrado que promueve el crecimiento de bacterias intestinales beneficiosas específicas como las bifidobacterias. Estudios previos del patógeno oportunista nosocomial Pseudomonas aeruginosa PAO1 han demostrado que los FOS reducen el crecimiento y la formación de biopelículas, debido a una disminución en la motilidad y la secreción de exotoxina. Sin embargo, la base transcripcional de estas alteraciones fenotípicas sigue sin estar clara. Para abordar esta pregunta, se realizó un análisis de secuencia de ARN (RNAseq) que nos permitió detectar la presencia de una isla genómica formada por 15 genes que fueron reprimidos en presencia de FOS. Anteriormente, se demostró mediante el análisis funcional de mutantes isogénicos, que los genes PA0643, PA0644 y PA0646, ubicados en esta isla génica, codifican proteínas involucradas en el crecimiento, la formación de biopelículas, la motilidad. En este contexto, este trabajo plasmo la implicación de estos genes en la modulación de la respuesta inflamatoria.

 

ABSTRACT

Pseudomonas aeruginosa is an omnipresent Gram negative opportunistic human pathogen that is not considered part of the human commensal intestinal microbiota. However, depletion of the intestinal microbiota (dysbiosis) after antibiotic treatment facilitates colonization of the intestinal tract by multiple drug P. aeruginosa resistant. A possible alternative to conventional treatments is based on the use of functional foods with prebiotic activity. The bifidogenic effect of fructooligosaccharides (FOS) is well established; it has been shown to promote the growth of specific beneficial intestinal bacteria such as bifidobacteria. Previous studies of the nosocomial opportunistic pathogen Pseudomonas aeruginosa PAO1 have shown that FOS reduce the growth and formation of biofilms, due to a decrease in motility and exotoxin secretion. However, the transcriptional basis of these phenotypic alterations remains unclear. To address this question, an RNA sequence analysis (RNAseq) was performed that allowed us to detect the presence of a genomic island formed by 15 genes which are repressed in the presence of FOS. Previously, it was demonstrated by the functional analysis of isogenic mutants, that the genes PA0643, PA0644 and PA0646, located in this genomic island, encode proteins involved in growth, biofilm formation, motility. In this context, this work reflected the implication of these genes in the modulation of the inflammatory response.

Files

5 Tena-Garitaonaindia et al 2020.pdf

Files (475.1 kB)

Name Size Download all
md5:59899167eda62570ee2dd9f06b2070b6
475.1 kB Preview Download

Additional details

Related works

References

  • Amer LS., Bishop BM., van Hoek ML. Antimicrobial and antibiofilm activity of cathelicidins and short synthetic peptides against Francisella. Biochem Biophys Res Commun 2010;396: 246-251.
  • Chang W., Small D.A., Toghrol F., Bentley W.E. Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 2005; 6: 115.
  • Christensen GD., Simpson WA., Younger JJ., Baddour LM., Barrett FFet al. Adherence of coagulase negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 1985;22: 996-1006.
  • Daddaoua A., Puerta V., Requena P., Martinez-Ferez A., Guadix E. et al., Goat milk oligosaccharides are anti-inflammatory in rats with hapten-induced colitis. J Nutr 2006; 136: 672-676.
  • Duseja A., Chawla Y.K.Obesity and NAFLD: the role of bacteria and microbiota. Clin [1] Liver Dis2014;18: 59-71.
  • Froebel L.K., Jalukar S., Lavergne T.A., Lee J.T. Duong T. Administration of dietary prebiotics improvesgrowth performance and reduces pathogen colonization in broiler chickens. Poult Sci2019; 98: 6668-6676.
  • Gaines J.M., Carty N.L., Tiburzi F., Davinic M., Visca P., Colmer-Hamood J.A., Hamood A.N. Regulation of the Pseudomonas aeruginosa toxA, regA and ptxR genes by the iron-starvation sigma factor PvdS under reduced levels of oxygen. Microbiology2007; 153: 4219-33.
  • Hoiby N., Ciofu O., Bjarnsholt T. Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 2010; 5: 1663-1674.
  • Huang X., Du W., McClellan SA., Barrett RP., Hazlett LD. TLR4 is required for host resistance in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2006; 47: 4910-4916.
  • Juhas M. Pseudomonas aeruginosa essentials: an update on investigation of essential genes. Microbiology 2015; 161: 2053-2060.
  • Juhas, M., Van der Meer, J.R., Gaillard, M., Harding, R.M., Hood, D.W., Crook, D.W. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 2009; 33: 376-93.
  • Knol J., Boehm G., Lidestri M., Negretti F., Jelinek J., Agosti M., Stahl B., Marini A., Mosca F. Increase of faecal bifidobacteria due to dietary oligosaccharides induces a reduction of clinically relevant pathogen germs in the faeces of formula-fed preterm infants. Acta Paediatr Suppl 2005;94(449): 31-3.
  • Lavoie EG., Wangdi T., Kazmierczak B.I. Innate immune responses to Pseudomonas aeruginosa infection. Microbes Infect 2011;13: 1133-1145.
  • Mah TF., Pitts B., Pellock B., Walker G.C., Stewart P.S., O'Toole GA. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature2003; 426(6964):306-10.
  • Manuel Rubio-Gómez., Carlos Molina- Santiago., Zulema Udaondo., Mireia Tena- Garitaonaindia., Tino Krell., Juan-Luis Ramos., Abdelali Daddaoua. Full Transcriptomic Response of Pseudomonas aeruginosa to an Inulin-Derived Fructooligosaccharide. Frontiers in Microbiology 2020; 11:202. DOI: 10.3389/fmicb.2020.00202.
  • Mao J., Lu T., Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation. Biophys J 2016; 110: 258-68.
  • Miyoshi-Akiyama T., Tada T., Ohmagari N., Viet Hung N., Tharavichitkul P., Pokhrel B.M., Gniadkowski M., Shimojima M., Kirikae T. Emergence and Spread of Epidemic Multidrug-Resistant Pseudomonas aeruginosa. Genome Biol Evol 2017; 9: 3238-3245.
  • Molina-Fuentes Á., Pacheco D., Marín P., Philipp B., Schink B., Marqués S. Identification of the Gene Cluster for the Anaerobic Degradation of 3,5-Dihydroxybenzoate (a- Resorcylate) in Thauera aromatica Strain AR- 1.Appl Environ Microbiol 2015; 81(20):7201- 14.
  • Natividad J.M., Verdu E.F. Modulation of intestinal barrier by intestinal microbiota: pathological andtherapeutic implications. Pharmacol Res 2012; 69:42-51.
  • Ortega González M.,vSánchez de medina F., Molina-santiago C., López-posadas R., Pacheco D., KrellT., Martínez Augustin O., Abdelali Daddaoua. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms. Plos One 2014; 9(1):e85772.
  • Ortiz-Castro R., Pelagio-Flores R., Méndez-Bravo A., Ruiz-Herrera L.F., Campos-García J., López-Bucio J. Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. Mol Plant Microbe Interact 2014; 27: 364-78.
  • Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: a laboratory manual, 2nd ed Cold Spring Harbor Laboratory, Cold Spring Harbor: New York 1989.
  • Stephen-Bentley D., Julian Parkhill. [11] Genomic perspectives on the evolution and spread of bacterial pathogens. Proc Biol Sci 2015; 22: 282.
  • Tatterson, L.E., Poschet, J.F., Firoved, A., Skidmore, J., Deretic, V. CFTR and Pseudomonas infections in cystic fibrosis. Front Biosci. 2001;6:D890-7.
  • Von Klitzing, E., Bereswill, S., Heimesaat, M.M. Multidrug-Resistant Pseudomonas aeruginosa Induce Systemic Pro-Inflammatory Immune Responses in Colonized Mice. Eur J Microbiol Immunol 2017; 7: 200-209.
  • Yasuda, A., Inoue, K., Sanbongi, C., Yanagisawa, R., Ichinose, T., Tanaka, M., Yoshikawa, T., Takano, H. Dietary supplementation with fructooligosaccharides attenuates allergic peritonitis in mice. Biochem Biophys Res Commun. 2012;422(4):546-50.