Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published July 30, 2021 | Version v1
Book chapter Open

Riesgo operacional bancario aplicado con redes neuronales artificiales / Bank operational risk applied with artificial neural networks

  • 1. Universidad Nacional Autónoma de México
  • 1. ManglarEditores

Description

Resumen 

La gestión de riesgo operacional ha sido ampliamente investigada en los últimos años, sin embargo, el Comité de Supervisión Bancaria de Basilea recomienda que los bancos desarrollen sistemas de medición que mejoren la comprensión del riesgo de sus actividades en comparación con las metodologías existentes. El objetivo de este capítulo es construir un modelo de Redes Neuronales Artificiales (RNA) que pueda ser integrado en la gestión de riesgo operacional en el sector bancario para analizar el desempeño de los eventos de pérdida. Con el uso de RNA se busca integrar una metodología no lineal que permita establecer una relación entre las actividades bancarias y las pérdidas económicas para mostrar un enfoque diferente en la evaluación de riesgos que pueda ser una alternativa a los métodos tradicionales. El capítulo se divide en dos secciones, la primera describe el proceso de la gestión de riesgo operacional desde la planeación hasta el control y mitigación de riesgos. La segunda sección muestra la aplicación de redes neuronales artificiales (RNA) como herramienta en la clasificación y medición de variables. Se concluye que el uso de RNA complementa a los métodos lineales para la cuantificación de variables en riesgo operacional.

Abstract

The operational risk management has been extensively researched in the past few years; however, The Basel Committee on Banking Supervision recommends that banks develop measurement systems that will improve the understanding of the risk of their activities compared to existing methodologies. The objective of this chapter is building an Artificial Neural Networks (ANN) model that can be incorporated into the operational risk management in banks to analyze the performance of loss events. The use of ANN is intended to integrate a non-lineal methodology that establishes a relationship between banking activities and financial losses to show a different approach to risk assessment which could be an alternative to the traditional methods. This chapter is divided in two sections, the first describes the process of operational risk management since planning until control and mitigation of risk. The second shows the artificial neural network application as tool in classifying and sizing variables. It is concluded that the use of artificial neural networks complements to lineal methods for quantifying variables in operational risk.

Notes

Código JEL: G21.

Files

Nuevas Perspectivas Financieras CAP 1.pdf

Files (2.1 MB)

Name Size Download all
md5:a33a9211db584200d822bf45dceea03d
2.1 MB Preview Download

Additional details

Related works

Is cited by
Book chapter: 10.5281/zenodo.5068993 (DOI)
Book: 978-9978-11-049-2 (ISBN)

References

  • Andersen, L., Häger, D., & Vormeland H. (2016, June 1). Causal analysis of operational risk for deriving effective key risk indicators. Journal of Risk Management in Financial Institutions, 9(3), 289-304. https://bit.ly/3dIvVl4
  • Barnier, B. (2011). Manual de riesgo operacional para empresas financieras. Harriman House.
  • Basel Committee on Banking Supervision. (2003, February). Sound Practices for the Management and Supervision of Operational Risk. https://bit.ly/3jD5h10
  • Basel Committee on Banking Supervision. (2011, June). Principles for the Sound Management of Operational Risk. https://bit.ly/3dIopXL
  • Basel Committee on Banking Supervision. (2018, December). Cyber-resilience: Range of practices. https://bit.ly/3hFL2gG
  • Birindelli, G., & Ferretti, P. (2017). Operational Risk Management in Banks. Palgrave Macmillan.
  • Comisión Nacional Bancaria y de Valores. (2019, noviembre 18). Portafolio de información – Consultas [Estadísticas en línea]. https://bit.ly/3jD5gds
  • Karam, E., & Planchet, F. (2012). Operational risks in financial sectors. Advances in Decision Sciences, (2012), 1-57. Article ID 385387. https://doi.org/gb8j5g
  • Martínez-Sánchez, J. & Venegas-Martínez, F. (2013, octubre/diciembre). Riesgo operacional en el proceso de liquidación del mercado mexicano de valores: un enfoque bayesiano. Investigación Económica, 72(286), 101-138. https://bit.ly/3xhU0av
  • Oliveira, M., Figueiredo, A., & Cabus, M. (2018, May). Scenario analysis in the BNDES experience: integrating operational risk management with the measurement of capital. Revista Contabilidade & Financas – USP, 29(77), 283-296. https://doi.org/gmg2
  • Pieket, B., & Spruit, M. (2018). Improving Operational Risk Management Using Business Performance Management Technologies. Sustainability, 10(3), 1-20. https://doi.org/gdfdg8
  • Población, F. (2017). Financial Risk Management. Palgrave Macmillan.
  • Robertson, D. (2016). Managing Operational Risk. Palgrave Macmillan.
  • Xu, Y., Pinedo, M., & Xue, M. (2016) Operational Risk in Financial Services. Production and Operations Management, 26(3), 426–445. https://doi.org/gmg3