Published June 30, 2021 | Version v1
Journal article Open

QSAR analysis and molecular docking study of pyrrolo- and pyridoquinolinecarboxamides with diuretic activity

  • 1. National University of Pharmacy
  • 2. V. N. Karazin Kharkiv National University
  • 3. Danylo Halytsky Lviv National Medical University

Description

The aim. The aim of the study was to reveal QSAR and ascertain the possible mechanism of action via docking study in the row of tricyclic quinoline derivatives with diuretic activity.

Materials and methods. Pyrrolo- and pyridoquinolinecarboxamides with proven diuretic activity were involved in the study. Molecular descriptors were calculated using HyperChem and GRAGON software, and QSAR models were built using BuildQSAR software. For receptor-oriented flexible docking, the Autodock 4.2 software package was used.

Results. Multivariate linear QSAR models were built on two datasets of quinolinecarboxamides: Vol = a∙X1 + b∙X2 + c∙X3 + d, where Vol – volume of the daily produced urine in rats, X– molecular descriptor. QSAR analysis showed that the diuretic activity is determined by the geometric and spatial structure of molecules, logP, the energy values, RDF- and 3D-MoRSE-descriptors. Based upon internal and external validation of the models, the most informative two-parameter linear QSAR model  was proposed. Docking data showed the high affinity of two lead compounds to the carbonic anhydrase II.

Conclusions. QSAR analysis of tricyclic quinoline derivatives revealed that the diuretic activity increases with the increase of value of logP, refractivity, and dipole moment and with the decrease of volume, surface area, and polarization of the molecules. Increase of values of such energy descriptors as bonds energy, core-core interaction, and energy of the highest occupied molecular orbital results in higher diuresis; decrease in hydration energy leads to higher diuretic activity. Based upon molecular docking calculation, the mechanism of diuretic action is proposed to be carbonic anhydrase inhibition.

QSAR models and docking data are useful for in-depth study of diuretic activity of tricyclic quinolines and could be a theoretical basis for de novo-design of new diuretics

Files

QSAR analysis and molecular docking study of pyrrolo- and pyridoquinolinecarboxamides with diuretic activity.pdf

Additional details

References

  • Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M. et. al. (2014). QSAR Modeling: Where Have You Been? Where Are You Going To? Journal of Medicinal Chemistry, 57 (12), 4977–5010. doi: http://doi.org/10.1021/jm4004285
  • Neves, B. J., Braga, R. C., Melo-Filho, C. C., Moreira-Filho, J. T., Muratov, E. N., Andrade, C. H. (2018). QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Frontiers in Pharmacology, 9. doi: http://doi.org/10.3389/fphar.2018.01275
  • Wang, T., Wu, M.-B., Lin, J.-P., Yang, L.-R. (2015). Quantitative structure–activity relationship: promising advances in drug discovery platforms. Expert Opinion on Drug Discovery, 10(12), 1283–1300. doi: http://doi.org/10.1517/17460441.2015.1083006
  • Tandon, H., Chakraborty, T., Suhag, V. (2019). A Concise Review on the Significance of QSAR in Drug Design. Chemical and Biomolecular Engineering, 4 (4), 45–51. doi: http://doi.org/10.11648/j.cbe.20190404.11
  • Perekhoda, L. A. (2013). Quantitative Analysis of the Structure – Anticonvulsant Activity Relationship in Series of 1,2,3-Triazole(1H), 1,2,4-Triazole(4H), 1,3,4-Oxadiazole(1H), and 1,3,4-Thiadiazole(1H) Derivatives. Pharmaceutical Chemistry Journal, 47 (11), 42–44.
  • Perekhoda, L., Drapak, I., Sych, І., Tsapko, Т. (2016). (2016). In silico approaches for rational design of potential anticonvulsants among 5-substituted 2-(R-amino)-1,3,4-thiadiazoles. ScienceRise, 2 (4 (19)), 44–50. doi: http://doi.org/10.15587/2313-8416.2016.61078
  • Huang, H.-J., Chetyrkina, M., Wong, C.-W., Kraevaya, O. A., Zhilenkov, A. V., Voronov, I. I. et. al. (2021). Identification of potential descriptors of water-soluble fullerene derivatives responsible for antitumor effects on lung cancer cells via QSAR analysis. Computational and Structural Biotechnology Journal, 19, 812–825. doi: http://doi.org/10.1016/j.csbj.2021.01.012
  • Tejera, E., Munteanu, C. R., López-Cortés, A., Cabrera-Andrade, A., Pérez-Castillo, Y. (2020). Drugs Repurposing Using QSAR, Docking and Molecular Dynamics for Possible Inhibitors of the SARS-CoV-2 Mpro Protease. Molecules, 25 (21), 5172. doi: http://doi.org/10.3390/molecules25215172
  • Hadavand Mirzaei, H., Jassbi, A. R., Pirhadi, S., Firuzi, O. (2020). Study of the mechanism of action, molecular docking, and dynamics of anticancer terpenoids from Salvia lachnocalyx. Journal of Receptors and Signal Transduction, 40 1), 24–33. doi: http://doi.org/10.1080/10799893.2019.1710847
  • Vilar, S., Costanzi, S. (2012). Predicting the biological activities through QSAR analysis and docking-based scoring. Methods in molecular biology, 914, 271–284. doi: http://doi.org/10.1007/978-1-62703-023-6_16
  • Roush, G. C., Sica, D. A. (2016). Diuretics for Hypertension: A Review and Update. American Journal of Hypertension, 29 (10), 1130–1137. doi: http://doi.org/10.1093/ajh/hpw030
  • Li, X., Liao, J., Jiang, Z., Liu, X., Chen, S., He, X. et. al. (2020). A concise review of recent advances in anti-heart failure targets and its small molecules inhibitors in recent years. European Journal of Medicinal Chemistry, 186, 111852. doi: http://doi.org/10.1016/j.ejmech.2019.111852
  • Sica, D. A. (2011). Diuretic use in renal disease. Nature Reviews Nephrology, 8 (2), 100–109. doi: http://doi.org/10.1038/nrneph.2011.175
  • Burnier, M., Bakris, G., Williams, B. (2019). Redefining diuretics use in hypertension: why select a thiazide-like diuretic? Journal of Hypertension, 37 (8), 1574–1586. doi: http://doi.org/10.1097/hjh.0000000000002088
  • Alzghari, S. K., Rambaran, K. A., Ray, S. D. (2020). Diuretics. Side Effects of Drugs Annual, 42, 227–237. doi: http://doi.org/10.1016/bs.seda.2020.07.005
  • Bowman, B. N., Nawarskas, J. J., Anderson, J. R. (2016). Treating Diuretic Resistance. Cardiology in Review, 24 (5), 256–260. doi: http://doi.org/10.1097/crd.0000000000000116
  • Titko, T., Perekhoda, L., Drapak, I., Tsapko, Y. (2020). Modern trends in diuretics development. European Journal of Medicinal Chemistry, 208, 112855. doi: http://doi.org/10.1016/j.ejmech.2020.112855
  • Honndorf, V. S., Heine, A., Klebe, G., Supuran, C. T. (2006). carbonic anhydrase II in complex with furosemide as sulfonamide inhibitor. doi: http://doi.org/10.2210/pdb1z9y/pdb
  • Supuran, C. T., De Simone, G. (Ed.) (2015). Carbonic Anhydrases as Biocatalysts. Elsevier, 398. doi: http://doi.org/10.1016/c2012-0-13548-1
  • Ukrainets, I., Golik, M., Sidorenko, L., Korniyenko, V., Grinevich, L., Sim, G., Kryvanych, O. (2018). The Study of the Structure—Diuretic Activity Relationship in a Series of New N-(Arylalkyl)-6-hydroxy-2-methyl-4-oxo-2,4-dihydro-1H-pyrrolo-[3,2,1-ij]quinoline-5-carboxamides. Scientia Pharmaceutica, 86 (3), 31. doi: http://doi.org/10.3390/scipharm86030031
  • Ukrainets, I., Sidorenko, L., Golik, M., Chernenok, I., Grinevich, L., Davidenko, A. (2018). N-Aryl-7-hydroxy-5-oxo-2,3-dihydro-1H,5H-pyrido-[3,2,1-ij]quinoline-6-carboxamides. The Synthesis and Effects on Urinary Output. Scientia Pharmaceutica, 86 (2), 12. doi: http://doi.org/10.3390/scipharm86020012
  • de Oliveira, D. B., Gaudio, A. C. (2000). BuildQSAR: A New Computer Program for QSAR Analysis. Quantitative Structure-Activity Relationships, 19(6), 599–601. doi: http://doi.org/10.1002/1521-3838(200012)19:6<599::aid-qsar599>3.0.co;2-b
  • Semenets, A., Suleiman, M., Georgiyants, V., Kovalenko, S., Kobzar, N., Grinevich, L. et. al. (2020). Theoretical justification of a purposeful search of potential neurotropic drugs. ScienceRise: Pharmaceutical Science, 4 (26), 4–17. doi: http://doi.org/10.15587/2519-4852.2020.210042
  • Hehre, W. J. (2003). A Guide to Molecular Mechanics and Quantum Chemical Calculations. Irvine: Wavefunction, 796.
  • Chemistry Software, HyperChem, Molecular Modeling. Available at: http://www.hyper.com/
  • Todeschini, R., Consonni, V. (2009). Molecular Descriptors for Chemoinformatics. Molecular Descriptors for Chemoinformatics. doi: http://doi.org/10.1002/9783527628766
  • Patel, S. R., Gangwal, R., Sangamwar, A. T., Jain, R. (2015). Synthesis, biological evaluation and 3D QSAR study of 2,4-disubstituted quinolines as anti-tuberculosis agents. European Journal of Medicinal Chemistry, 93, 511–522. doi: http://doi.org/10.1016/j.ejmech.2015.02.034
  • Wang, J., Zhao, C., Tu, J., Yang, H., Zhang, X., Lv, W., Zhai, H. (2018). Design of novel quinoline-aminopiperidine derivatives as Mycobacterium tuberculosis (MTB) GyrB inhibitors: an in silico study. Journal of Biomolecular Structure and Dynamics, 37 (11), 2913–2925. doi: http://doi.org/10.1080/07391102.2018.1498806
  • Jiménez Villalobos, T. P., Gaitán Ibarra, R., Montalvo Acosta, J. J. (2013). 2D, 3D-QSAR and molecular docking of 4(1H)-quinolones analogues with antimalarial activities. Journal of Molecular Graphics and Modelling, 46, 105–124. doi: http://doi.org/10.1016/j.jmgm.2013.10.002
  • Karnik, K. S., Sarkate, A. P., Tiwari, S. V., Azad, R., Burra, P. V. L. S., Wakte, P. S. (2021). Computational and Synthetic approach with Biological Evaluation of Substituted Quinoline derivatives as small molecule L858R/T790M/C797S triple mutant EGFR inhibitors targeting resistance in Non-Small Cell Lung Cancer (NSCLC). Bioorganic Chemistry, 107, 104612. doi: http://doi.org/10.1016/j.bioorg.2020.104612
  • Metelytsia, L., Hodyna, D., Dobrodub, I., Semenyuta, I., Zavhorodnii, M., Blagodatny, V. et. al. (2020). Design of (quinolin-4-ylthio)carboxylic acids as new Escherichia coli DNA gyrase B inhibitors: machine learning studies, molecular docking, synthesis and biological testing. Computational Biology and Chemistry, 85, 107224. doi: http://doi.org/10.1016/j.compbiolchem.2020.107224