Published June 25, 2021 | Version v1
Journal article Open

Electromechanical guidance system based on a fuzzy proportional-plus-differential position controller

  • 1. Lviv Polytechnic National University, Ukraine
  • 2. Hetman Petro Sahaidachnyi National Army Academy, Ukraine

Description

Purpose. The purpose is to develop solutions for the implementation of optimal laws of arms positioning, overshoot-free and requiring no post-adjustments. Method. The control model is based on the fuzzy set theory; and the structural modeling methodology is used to study the dynamics indices. Results. The structural scheme of the positional electromechanical system with a fuzzy proportional-plus-differential position controller and the method of control adaptation to the position reference signal change are obtained. Scientific novelty. A model of a fuzzy proportional-differential controller signal adaptation in the structure of a positional electromechanical system is proposed. Practical value. A solution is obtained for the implementation of optimal guidance process, non-overshooting and requiring no post-adjustments, also featuring the maximum weapons speed and minimal sensitivity to parametric disturbances.

Files

Electromechanical guidance system based on a fuzzy proportional-plus-differential position controller.pdf

Additional details

References

  • Krainyk L.V., Hrubel M.H., Yalnytskyi O.D. Analysis of devel-opment of the modern fighting wheeled machines. Systems of Arms and Military Equipment, 2017, no. 1 (49), pp. 126-131. Available at: http://www.hups.mil.gov.ua/periodic-app/article/17585/eng (accessed 12 October 2020). (Ukr).
  • BM-21 Combat Vehicle. Technical description and operating instructions. Moscow, Voenizdat Publ., 1982. 99 p. (Rus).
  • Kuznetsov B.I., Nikitina T.B., Kolomiets V.V., Bovdui I.V. Improving of electromechanical servo systems accuracy. Electri-cal Engineering & Electromechanics, 2018, no. 6, pp. 33-37. doi: https://doi.org/10.20998/2074-272X.2018.6.04.
  • Kuznetsov B.I., Nikitina T.B., Bovdui I.V., Kobilyanskiy B.B. Improving of electromechanical stabilization systems accuracy. Electrical Engineering & Electromechanics, 2019, no. 2, pp. 21-27. doi: https://doi.org/10.20998/2074-272X.2019.2.04.
  • Paranchuk Ya.S., Chumakevych V.O., Evdokimov P.M., Mos-kalyk V.O. High-speed electromechanical guidance and stabili-zation system based on pulse-width converter with fuzzy con-trol. Proceedings of International Scientific and Technical Con-ference «Problems of Enhancing the Energy Efficiency of the Electromechanical Converters in Electrical Energy Systems», Sevastopol, Ukraine, 2013, pp. 71-72. (Ukr).
  • Paranchuk Y., Evdokimov P., Kuznyetsov O. Electromechanical positioning system with a neuro-fuzzy corrector. Przeglad Elek-trotechniczny, 2020, no. 9, pp. 52-55. doi: https://doi.org/10.15199/48.2020.09.11.
  • Chilikin M.G., Klyuchev V.I., Sandler A.S. Theory of Automated Electric Drives. Moscow, Energiya Publ., 1979. 616 p. (Rus).
  • Lebedev Ye.D., Neimark V.Ye., Pistrak M.Ya., Slezhanovskiy O.V. Control of DC Electric Drives with Semiconductor Con-verters. Moscow, Energiya Publ., 1970. 200 p. (Rus).
  • De Azevedo H. R., Branodao S. F. M., Da Mota Alves J. B. A fuzzy logic controller for DC motor position control. Proceed-ings of IEEE 2nd International Workshop on Emerging Tech-nologies and Factory Automation (ETFA '93), 1993, pp. 18-27. doi: https://doi.org/10.1109/etfa.1993.396433.
  • Manikandan R., Arulmozhiyal R. Position control of DC servo drive using fuzzy logic controller. 2014 International Confer-ence on Advances in Electrical Engineering (ICAEE), 2014, pp. 1-5. doi: https://doi.org/10.1109/icaee.2014.6838474.
  • Priymak B.I., Bondarenko M.M., Khalimovsky O.M. Fuzzy control of electromechanical objects. Bulletin of Scientific Works of Dni-prodzerzhynsk State Technical University. Special Issue «Problems of Automated Electric Drive», 2007, pp. 308-311. (Ukr).
  • Lukichev D.V., Demidova G.L. Fuzzy control system of posi-tioning servo drives of elastic coupling rotary supports, Vestnik IGEU, 2013, no. 6, pp. 60-64. Available at: http://vestnik.ispu.ru/sites/vestnik.ispu.ru/files/publications/str.60-64_0.pdf (accessed 12 October 2020). (Rus).
  • Paranchuk Y., Matsyhin A. The system of arc lengths regulation of an electric arc furnace with a neuro-controller, Przeglad Elektrotechniczny, 2013, vol. 89, no. 3A, pp. 271-273. Available at: http://pe.org.pl/articles/2013/3a/58.pdf (accessed 12 October 2020).
  • Ying H. Fuzzy Control and Modeling: Analytical Foundations and Applications, IEEE press, 2000. 342 p. Available at: https://ieeexplore.ieee.org/book/5263877 (accessed 12 October 2020).
  • Lozynskyy O., Paranchuk Y., Paranchuk R. Fuzzy control law of electrode travel in arc steelmaking furnace. 2015 16th Interna-tional Conference on Computational Problems of Electrical Engineering (CPEE), 2015, pp. 103-106. doi: https://doi.org/10.1109/cpee.2015.7333349.
  • Mendel J. M., John R. I. B. Type-2 fuzzy sets made simple. IEEE Transactions on Fuzzy Systems, 2002, vol. 10, no. 2, pp. 117-127. doi: https://doi.org/10.1109/91.995115.
  • Paranchuk Ya.S. , Paranchuk R.Ya. Neural Network System for Continuous Voltage Monitoring in Electric Arc Furnace. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2016, iss. 2, pp. 74-80. Available at: http://nvngu.in.ua/index.php/en/archive/on-divisions-of-science/electrical-engineering/3398-neutral-network-system-for-continuous-voltage-monitoring-in-electric-arc-furnace (accessed 12 October 2020).
  • Paranchuk Y.S., Paranchuk R.Y. Research of arc furnace electri-cal mode with a fuzzy control model. Electrical Engineering & Electromechanics, 2020, no. 4, pp. 30-36. doi: https://doi.org/10.20998/2074-272X.2020.4.05.
  • Begian M.B., Melek W.W., Mendel J.M. Stability analysis of type-2 fuzzy systems. 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence), 2008, pp. 947-953. doi: https://doi.org/10.1109/fuzzy.2008.4630483.
  • Lozynskyy O., Paranchuk Y., Kobylianskyi O. Simulink model of electric modes in electric arc furnace. 2017 IEEE International Young Scientists Forum on Applied Physics and Engineering (YSF), 2017, pp. 54-57. doi: https://doi.org/10.1109/ysf.2017.8126591.