There is a newer version of the record available.

Published June 28, 2021 | Version 1.1
Dataset Open

TimeSpec4LULC: A deep learning-oriented global dataset of MODIS Terra-Aqua multi-spectral time series measured from 2002 to 2021 for LULC mapping and change detection.

  • 1. Dept. of Botany, Faculty of Science, University of Granada, 18071 Granada, Spain.
  • 2. Dept. of Botany, Faculty of Science, University of Granada, 18071 Granada, Spain. iEcolab, Inter-University Institute for Earth System Research, University of Granada, 18006 Granada, Spain
  • 3. Multidisciplinary Institute for Environment Studies "Ramón Margalef", University of Alicante, 03690, Spain
  • 4. Dept. of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, DaSCI, University of Granada, 18071, Granada, Spain

Contributors

  • 1. Dept. of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence, DaSCI, University of Granada, 18071, Granada, Spain
  • 2. ENSIAS, Mohammed V University, Rabat, 10170, Morocco

Description

TimeSpec4LULC is archived in 30 different ZIP files owning the name of the 29 LULC classes (one class is divided into two files since it is too large). Within each ZIP file, there exists a set of seven CSV files, each one corresponding to one of the seven spectral bands. The naming of each file follows this structure: IdOfTheClass_NameOfTheClass_ModisBand.csv
For example, for band 1 of the Barren Lands class, the filename is: 01_BarrenLands_MCD09A1b01.csv
Inside each CSV file, rows represent the collected pixels for that class. The first 11 columns contain the following metadata:
- “IdOfTheClass”: Id of the class.
- “NameOfTheClass”: Name of the class.
- “IdOfTheLevel0”: Id of the FAO-L0 (i.e., countries).
- “IdOfTheLevel1”: Id of the FAO-L1 (i.e., departments, states, or provinces depending on the country).
- “IdOfThePixel”: Id of the pixel.
- “PurityOfThePixel”: Spatial and inter-annual consensus for this class across multiple land-cover products, i.e., Purity of the pixel.
- “DataAvailability”: percentage of non-missing data per band throughout the time series.
- “Index_GHM”: average of Global Human Modification index (gHM).
- “Lat”: Latitude of the pixel center.
- “Lon”: Longitude of the pixel center.
- “.geo”: (Longitude, Latitude) of the pixel center with more precision.
And, the last 223 columns contain the 223 monthly observations of the time series for one spectral band from 2002-07 to 2021-01. 

Along with the dataset, an Excel file named 'Countries_Departments_FAO-GAUL' containing the FAO-L0 and the FAO-L1 Ids and names (following the FAO-GAUL standards) is provided. 

Notes

This research has been supported by DETECTOR (A-RNM-256-UGR18 Universidad de Granada/FEDER), LifeWatch SmartEcomountains (LifeWatch-2019-10-UGR-01 Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER), BBVA DeepSCOP (Ayudas Fundación BBVA a Equipos de Investigación Científica 2018), Ramón y Cajal Programme (RYC-2015-18136), DeepL-ISCO (A-TIC-458-UGR18 Ministerio de Ciencia e Innovación/FEDER), SMART-DASCI (TIN2017-89517-P Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER), BigDDL-CET (P18-FR-4961 Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER), RESISTE (P18-RT-1927 Consejería de Economía, Conocimiento, y Universidad from the Junta de Andalucía/FEDER), and Ecopotential (641762 European Commission).

Files

01_BarrenLands_Part1.zip

Files (36.9 GB)

Name Size Download all
md5:3c0dffa0dd7ae870dfdf0c51c744fc00
11.0 GB Preview Download
md5:5542f5b9f36e5becc23a633ac7d2c2a8
7.6 GB Preview Download
md5:ed984b0e5476ae63434d63b417d03683
6.2 MB Preview Download
md5:bd302ab768a4b2fe3cb60be15be4555b
2.9 GB Preview Download
md5:8541f42cb3826696208863afe8f673fb
384.7 MB Preview Download
md5:02a74187c4dfc417b329a2a4c00dbea7
9.8 MB Preview Download
md5:8230eb6a4b158011710f8ebf1674661b
23.1 MB Preview Download
md5:eefa61540ccded82db41349846c664c5
114.3 MB Preview Download
md5:540de66e426a7398758bb710d10bd6f8
7.1 MB Preview Download
md5:0618a31793a44bd5dba2b08f8bbcfcdc
17.3 MB Preview Download
md5:ecff7f6a2e8e032e1c6c2fa97fb21865
3.9 MB Preview Download
md5:624dab181290db6d86e5d94d3352bf00
33.0 MB Preview Download
md5:2441517c689eef8a5d75082fc55ade6d
65.2 MB Preview Download
md5:9f2a5fd25e1c91afcb94b9b9887f440a
9.7 MB Preview Download
md5:17f77e769af949db43c41e81814e4765
3.5 GB Preview Download
md5:738badcfd24cc2da03da5b747725d3b2
46.3 MB Preview Download
md5:5fae3a7331ccf93fc9d62c76a379c532
13.2 MB Preview Download
md5:4d1c5a90ddd078f9fa4f7475658f540c
935.1 MB Preview Download
md5:d7c686d163090d1783c569666020336a
15.3 MB Preview Download
md5:dd7c31f43809d5e49ad6cccba317ad68
3.8 MB Preview Download
md5:964f1ae447d7e958b531043fca8c3502
26.0 MB Preview Download
md5:cb88b6a568b84467624ae6527f417975
304.0 MB Preview Download
md5:a973c13d4e25b84b3e0c8d34a5f8959c
2.7 GB Preview Download
md5:1e9f8364797f885048f32cb66a6f8422
299.0 MB Preview Download
md5:33933020355916b910e47f227d1bc36c
110.0 MB Preview Download
md5:d4e4999ceffa2e07c20f4516b76a5b2e
1.3 GB Preview Download
md5:08b986ac99e42ab6dc78ec612201565a
2.6 GB Preview Download
md5:8ed55889e23f9249356bdefd23bbe86a
1.2 GB Preview Download
md5:fcb18c568814d410dca0d41056d7ff3f
1.2 GB Preview Download
md5:ef21221080fd36491c3294ac9d7eeda6
443.5 MB Preview Download
md5:b0a7b0ee55c1bb07b012f93676834b37
92.0 kB Download

Additional details

Funding

European Commission
ECOPOTENTIAL – ECOPOTENTIAL: IMPROVING FUTURE ECOSYSTEM BENEFITS THROUGH EARTH OBSERVATIONS 641762