Published June 23, 2021 | Version v1
Journal article Open

An Overview of Innate Immune Response to Human Rhinovirus Infection

  • 1. Department of Medical Microbiology and Parasitology, Faculty of Basic Clinical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria.

Description

Abstract

Human rhinoviruses (HRV) are mainly associated with catarrh or the common cold and quite possibly cause one of the most unavoidable diseases in human beings. Although the HRV infections of the upper respiratory tract are generally somewhat harmless, there is increasing proof that HRV pave the way for more hazardous infections, promote asthmatic intensifications, and lead to severe diseases in the lower respiratory tract. Respiratory tract epithelial cells are the essential targets for rhinovirus and other respiratory pathogens. In the presence of rhinovirus, respiratory tract epithelial cells mount both supportive of provocative reactions and antiviral natural invulnerable reactions to clear the infection effectively. A portion of antiviral reactions include the expression of interferons (IFNs) and endoplasmic reticulum stress-actuated unfolded protein reaction and autophagy. In patients with chronic (persistent) lung diseases, these reactions may be either imperfect or incited in overabundance prompting insufficient getting free from infection and supported aggravation. In this review, components hidden behind innate antiviral invulnerability and the dysregulation of a portion of these instruments will be examined in patients with chronic lung diseases.

Özet

İnsan rinovirusları (HRV) esas olarak nezle veya soğuk algınlığı ile ilişkilidir ve büyük olasılıkla insanlarda en kaçınılmaz hastalıklardan birine neden olurlar. Üst solunum yollarının HRV enfeksiyonları genellikle bir şekilde zararsız olsa da HRV'nin daha tehlikeli enfeksiyonların önünü açtığına, astım şiddetini artırdığına ve alt solunum yollarında ciddi hastalıklara yol açtığına dair artan kanıtlar vardır. Solunum yolu epitel hücreleri, rinovirus ve diğer solunum yolu patojenleri için temel hedeflerdir. Rinovirus varlığında, solunum yolu epitel hücreleri, enfeksiyonu etkili bir şekilde temizlemek için hem provokatif reaksiyonları hem de antiviral doğal bağışıklığın koruyucu reaksiyonlarını destekler. Antiviral reaksiyonların bir kısmı, interferonların (IFN) ekspresyonunu ve endoplazmik retikulum stresle harekete geçen katlanmamış (unfolded) protein reaksiyonunu ve otofajiyi içerir. Kronik (persistan) akciğer hastalığı olan hastalarda, bu reaksiyonlar yetersiz olabileceği gibi aşırı reaksiyonlara da neden olabilir, bu durum enfeksiyonun temizlenmesini güçleştirirken ve alevlenmesini destekler. Bu derlemede, kronik akciğer hastalığı olan hastalarda doğuştan gelen antiviral yanıttaki savunma açıklarının arkasına gizlenmiş bileşenler ve bu araçların bir kısmının düzensizliği (disregülasyonu) incelenecektir.

Notes

Human Rhinovirus Enfeksiyonuna Doğuştan Gelen Bağışıklık Tepkisine Genel Bakış

Files

jmvi.2021.34.pdf

Files (500.4 kB)

Name Size Download all
md5:eb5fde5edc74cd512734960994586c7a
500.4 kB Preview Download

Additional details

References

  • 1. Moriyama M, Hugentobler WJ, Iwasaki A. Seasonality of Respiratory Viral Infections. Annu Rev Virol 2020; 7(1): 83-101.
  • 2. Zell R. Picornaviridae-the ever-growing virus family. Arch Virol 2018; 163(2): 299-317.
  • 3. Kimura H, Yoshizumi M, Ishii H, Oishi K, Ryo A. Cytokine production and signaling pathways in respiratory virus infection. Front Microbiol 2013; 4: 276.
  • 4. Perry AK, Chen G, Zheng D, Tang H, Cheng G. The host type I interferon response to viral and bacterial infections. Cell Res 2005; 15(6): 407-22.
  • 5. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol 2011; 30(1): 16-34.
  • 6. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 2006; 124(4): 783-801.
  • 7. Slater L, Bartlett NW, Haas JJ, Zhu J, Message SD, Walton RP, et al. Co-ordinated role of TLR3, RIG-I and MDA5 in the innate response to rhinovirus in bronchial epithelium. PLoS Pathog 2010; 6(11): e1001178.
  • 8. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 2011; 34(5): 637-50.
  • 9. Boehme KW, Guerrero M, Compton T. Human cytomegalovirus envelope glycoproteins B and H are necessary for TLR2 activation in permissive cells. J Immunol 2006; 177(10): 7094-102.
  • 10. Kurt-Jones EA, Popova L, Kwinn L, Haynes LM, Jones LP, Tripp RA, et al. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1(5): 398-401.
  • 11. Bieback K, Lien E, Klagge IM, Avota E, Schneider-Schaulies J, Duprex WP, et al. Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J Virol 2002; 76(17): 8729-36.
  • 12. Rudd BD, Burstein E, Duckett CS, Li X, Lukacs NW. Differential role for TLR3 in respiratory syncytial virus-induced chemokine expression. J Virol 2005; 79(6): 3350-7.
  • 13. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 2001; 413(6857): 732-8.
  • 14. Doyle SE, O'Connell R, Vaidya SA, Chow EK, Yee K, Cheng G. Toll-like receptor 3 mediates a more potent antiviral response than Toll-like receptor 4. The Journal of Immunology 2003; 170(7): 3565-71.
  • 15. Hewson CA, Jardine A, Edwards MR, Laza-Stanca V, Johnston SL. Toll-Like Receptor 3 Is Induced by and Mediates Antiviral Activity against Rhinovirus Infection of Human Bronchial Epithelial Cells. Journal of Virology 2005; 79(19): 12273-9.
  • 16. Guo-Parke H, Linden D, Weldon S, Kidney JC, Taggart CC. Mechanisms of Virus-Induced Airway Immunity Dysfunction in the Pathogenesis of COPD Disease, Progression, and Exacerbation. Front Immunol 2020; 11: 1205.
  • 17. Griego SD, Weston CB, Adams JL, Tal-Singer R, Dillon SB. Role of p38 Mitogen-Activated Protein Kinase in Rhinovirus-Induced Cytokine Production by Bronchial Epithelial Cells. The Journal of Immunology 2000; 165(9): 5211-20.
  • 18. Wang X, Lau C, Wiehler S, Pow A, Mazzulli T, Gutierrez C, et al. Syk is downstream of intercellular adhesion molecule-1 and mediates human rhinovirus activation of p38 MAPK in airway epithelial cells. The Journal of Immunology 2006; 177(10): 6859-70.
  • 19. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5(7): 730-7.
  • 20. Wang Q, Nagarkar DR, Bowman ER, Schneider D, Gosangi B, Lei J, et al. Role of double-stranded RNA pattern recognition receptors in rhinovirus-induced airway epithelial cell responses. J Immunol 2009; 183(11): 6989-97.
  • 21. Chen Y, Hamati E, Lee PK, Lee WM, Wachi S, Schnurr D, et al. Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN-dependent pathways. Am J Respir Cell Mol Biol 2006; 34(2): 192-203.
  • 22. Liu P, Jamaluddin M, Li K, Garofalo RP, Casola A, Brasier AR. Retinoic acid-inducible gene I mediates early antiviral response and Toll-like receptor 3 expression in respiratory syncytial virus-infected airway epithelial cells. J Virol 2007; 81(3): 1401-11.
  • 23. Kotla S, Peng T, Bumgarner RE, Gustin KE. Attenuation of the type I interferon response in cells infected with human rhinovirus. Virology 2008; 374(2): 399-410.
  • 24. Barral PM, Morrison JM, Drahos J, Gupta P, Sarkar D, Fisher PB, et al. MDA-5 is cleaved in poliovirus-infected cells. J Virol 2007; 81(8): 3677-84.
  • 25. Triantafilou K, Triantafilou M. Ion flux in the lung: virus-induced inflammasome activation. Trends Microbiol 2014; 22(10): 580-8.
  • 26. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007; 14(9): 1583-9.
  • 27. Triantafilou K, Kar S, van Kuppeveld FJ, Triantafilou M. Rhinovirus-induced calcium flux triggers NLRP3 and NLRC5 activation in bronchial cells. Am J Respir Cell Mol Biol 2013; 49(6): 923-34.
  • 28. Proud D, Turner RB, Winther B, Wiehler S, Tiesman JP, Reichling TD, et al. Gene expression profiles during in vivo human rhinovirus infection: insights into the host response. Am J Respir Crit Care Med 2008; 178(9): 962-8.
  • 29. Sanders SP, Proud D, Permutt S, Siekierski ES, Yachechko R, Liu MC. Role of nasal nitric oxide in the resolution of experimental rhinovirus infection. J Allergy Clin Immunol 2004; 113(4): 697-702.
  • 30. Proud D, Sanders SP, Wiehler S. Human rhinovirus infection induces airway epithelial cell production of human beta-defensin 2 both in vitro and in vivo. J Immunol 2004; 172(7): 4637-45.
  • 31. Dong B, Zhou Q, Zhao J, Zhou A, Harty RN, Bose S, et al. Phospholipid scramblase 1 potentiates the antiviral activity of interferon. J Virol 2004; 78(17): 8983-93.
  • 32. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 1957; 147(927): 258-67.
  • 33. Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol 2008; 8(7): 559-68.
  • 34. Der SD, Zhou A, Williams BR, Silverman RH. Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci U S A 1998; 95(26): 15623-8.
  • 35. Muramoto Y, Shoemaker JE, Le MQ, Itoh Y, Tamura D, Sakai-Tagawa Y, et al. Disease severity is associated with differential gene expression at the early and late phases of infection in nonhuman primates infected with different H5N1 highly pathogenic avian influenza viruses. J Virol 2014; 88(16): 8981-97.
  • 36. Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14(1): 36-49.
  • 37. Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 2003; 424(6948): 516-23.
  • 38. Acosta PL, Byrne AB, Hijano DR, Talarico LB. Human Type I Interferon Antiviral Effects in Respiratory and Reemerging Viral Infections. J Immunol Res 2020; 2020: 1372494.
  • 39. Bochkov YA, Hanson KM, Keles S, Brockman-Schneider RA, Jarjour NN, Gern JE. Rhinovirus-induced modulation of gene expression in bronchial epithelial cells from subjects with asthma. Mucosal Immunol 2010; 3(1): 69-80.
  • 40. Wark PA, Johnston SL, Bucchieri F, Powell R, Puddicombe S, Laza-Stanca V, et al. Asthmatic bronchial epithelial cells have a deficient innate immune response to infection with rhinovirus. J Exp Med 2005; 201(6): 937-47.
  • 41. Williams BR. PKR; a sentinel kinase for cellular stress. Oncogene 1999; 18(45): 6112-20.
  • 42. García MA, Meurs EF, Esteban M. The dsRNA protein kinase PKR: virus and cell control. Biochimie 2007; 89(6-7): 799-811.
  • 43. Hatada E, Saito S, Fukuda R. Mutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J Virol 1999; 73(3): 2425-33.
  • 44. Davies MV, Elroy-Stein O, Jagus R, Moss B, Kaufman RJ. The vaccinia virus K3L gene product potentiates translation by inhibiting double-stranded-RNA-activated protein kinase and phosphorylation of the alpha subunit of eukaryotic initiation factor 2. J Virol 1992; 66(4): 1943-50.
  • 45. Silverman RH. Viral encounters with 2',5'-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 2007; 81(23): 12720-9.
  • 46. Drappier M, Michiels T. Inhibition of the OAS/RNase L pathway by viruses. Curr Opin Virol 2015; 15:19-26.
  • 47. Turan K, Mibayashi M, Sugiyama K, Saito S, Numajiri A, Nagata K. Nuclear MxA proteins form a complex with influenza virus NP and inhibit the transcription of the engineered influenza virus genome. Nucleic Acids Res 2004; 32(2): 643-52.
  • 48. Xu PB, Lou JS, Ren Y, Miao CH, Deng XM. Gene expression profiling reveals the defining features of monocytes from septic patients with compensatory anti-inflammatory response syndrome. J Infect 2012; 65(5): 380-91.
  • 49. Kim J, Schleimer R. Epithelial Cell Innate Responses to Rhinovirus Infection. In: Pawankar R, Holgate ST, Rosenwasser LJ (eds), Allergy Frontiers: Classification and Pathomechanisms. 2009, Springer, Tokyo. pp:267-84.
  • 50. Piper SC, Ferguson J, Kay L, Parker LC, Sabroe I, Sleeman MA, et al. The role of interleukin-1 and interleukin-18 in pro-inflammatory and anti-viral responses to rhinovirus in primary bronchial epithelial cells. PLoS One 2013; 8(5): e63365.
  • 51. Grünberg K, Timmers MC, Smits HH, de Klerk EP, Dick EC, Spaan WJ, et al. Effect of experimental rhinovirus 16 colds on airway hyperresponsiveness to histamine and interleukin-8 in nasal lavage in asthmatic subjects in vivo. Clin Exp Allergy 1997; 27(1): 36-45.
  • 52. Teran LM, Johnston SL, Schröder JM, Church MK, Holgate ST. Role of nasal interleukin-8 in neutrophil recruitment and activation in children with virus-induced asthma. Am J Respir Crit Care Med 1997; 155(4): 1362-6.
  • 53. Gern JE, Vrtis R, Grindle KA, Swenson C, Busse WW. Relationship of upper and lower airway cytokines to outcome of experimental rhinovirus infection. Am J Respir Crit Care Med 2000; 162(6): 2226-31.
  • 54. Johnston SL, Papi A, Bates PJ, Mastronarde JG, Monick MM, Hunninghake GW. Low grade rhinovirus infection induces a prolonged release of IL-8 in pulmonary epithelium. J Immunol 1998; 160(12): 6172-81.
  • 55. Spurrell JC, Wiehler S, Zaheer RS, Sanders SP, Proud D. Human airway epithelial cells produce IP-10 (CXCL10) in vitro and in vivo upon rhinovirus infection. Am J Physiol Lung Cell Mol Physiol 2005; 289(1): L85-95.
  • 56. Levandowski RA, Ou DW, Jackson GG. Acute-phase decrease of T lymphocyte subsets in rhinovirus infection. J Infect Dis 1986; 153(4): 743-8.