Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published February 24, 2014 | Version v1
Dataset Open

Data from: Population connectivity and phylogeography of a coastal fish, Atractoscion aequidens (Sciaenidae), across the Benguela Current region: evidence of an ancient vicariant event.

  • 1. Royal Holloway University of London
  • 2. Rhodes University
  • 3. Agostinho Neto University
  • 4. Aberystwyth University

Description

Contemporary patterns of genetic diversity and population connectivity within species can be influenced by both historical and contemporary barriers to gene flow. In the marine environment, present day oceanographic features such as currents, fronts and upwelling systems can influence dispersal of eggs/larvae and/juveniles/adults, shaping population substructuring. The Benguela Current system in the southeastern Atlantic is one of the oldest upwelling systems in the world, and provides a unique opportunity to investigate the relative influence of contemporary and historical mechanisms shaping the evolutionary history of warm-temperate fish species. Using the genetic variation in the mitochondrial DNA Control Region and eight nuclear microsatellite DNA loci, we identified the presence of two highly divergent populations in a vagile and warm-temperate fish species, Atractoscion aequidens, across the Benguela region. The geographical distributions of the two populations, on either side of the perennial upwelling cell, suggest a strong correlation between the oceanographic features of the system and the breakdown of gene flow within this species. Genetic divergence (mtDNA φST = 0.902, microsatellite FST = 0.055: probability of genetic homogeneity for either marker = p<0.001), absence of migrants (less than 1% per generation) between populations and coalescent estimates of time since most recent common ancestor suggest that the establishment of the main oceanographic features of the system (2 million years ago), particularly the strengthening and position of the perennial upwelling cell, is the most likely mechanism behind the observed isolation. Concordance between mitochondrial and nuclear genetic markers indicates that isolation and divergence of the northern and southern Benguela populations of A. aequidens occurred deep in the past and has continued to the present day. These findings suggest that the Benguela Current system may constitute an ancient and impermeable barrier to gene flow for warm-temperate fish species.

Notes

Files

geelbeck_gp.txt

Files (25.8 kB)

Name Size Download all
md5:e8c8e144ee8b53fcfd8a065cdd104cac
25.8 kB Preview Download

Additional details

Related works