Published September 20, 2018 | Version v1
Dataset Open

Data from: Disentangling competitive versus climatic drivers of tropical forest mortality

  • 1. University of Arizona
  • 2. Montana State University
  • 3. French National Centre for Scientific Research
  • 4. University of the French West Indies and Guiana
  • 5. VU University Amsterdam

Description

1. Tropical forest mortality is controlled by biotic and abiotic processes, but how these processes interact to determine forest structure is not well understood. Using long-term demography data from permanent forest plots at the Paracou Tropical Forest Research Station in French Guiana, we analyzed the relative influence of competition and climate on tree mortality. We found that self-thinning is evident at the stand level, and is associated with clumped mortality at smaller scales (< 2 m) and regular spacing of living trees at intermediate (2.5-7.5 m) scales. A competition index based on spatial clustering of dead trees was used to build predictive mortality models, which also accounted for climate interactions. 2. The model that most closely fitted observations included both the competition index and climatic variables, with climate-only and competition-only models performing worse than the full model. There was strong evidence for size-specific mortality, with highest mortality for small and very large trees, as well as sensitivity of trees to drought, especially when temperatures were high, and when soils were water saturated. The effect of the competition index was more complex than expected a priori: a higher CI index was associated with lower mortality odds, which we hypothesize is caused by gap-phase dynamics, but there was also evidence for competition-induced mortality at very high index values. 3. The strong signature of competition as a control over mortality at the stand and individual scales confirms that it plays a very important role in determining tropical forest structure. The complexity of the competition-mortality relationship and its interaction with climate indicates that a thorough consideration of the scale of analysis is needed when inferring the role of competition in tropical forests, but demonstrates that climate-only mortality models can be significantly improved by including competition effects, even when ignoring species-specific effects. 4. Synthesis Empirical models such as the one developed here can help constrain and improve process-based vegetation models, serving both as a benchmark and as a means to disentangle mortality processes. Tropical ecosystem dynamic models would benefit greatly from explicitly considering the role of competition in stand development and self-thinning while modeling demography, as well as its interaction with climate.

Notes

Funding provided by: National Science Foundation
Crossref Funder Registry ID: http://dx.doi.org/10.13039/100000001
Award Number: DGE-1143953

Files

mortalitymodel.csv

Files (60.8 MB)

Name Size Download all
md5:f26a72491d59496f06db465f73d0487d
43.2 MB Preview Download
md5:e92672e7130cfcf7dee3d289d4fdb771
5.1 kB Preview Download
md5:acce526772b1b4629417d99133362d95
17.6 MB Preview Download

Additional details

Related works

Is cited by
10.1111/1365-2745.12876 (DOI)