Conference paper Open Access

Analysis of Forces Involved in the Perching Maneuver of Flapping-Wing Aerial Systems and Development of Ultra-Lightweight Perching System

V. Perez-Sanchez; A.E. Gomez-Tamm; F.J. Garcia-Rubiales; B.C. Arrue; A. Ollero

Trying to optimize the design of aerial robotics systems, this work presents an optimized low-weight landing system for flapping-wing aerial robots. The design, based on the use of low-sized neodymium magnets, intends to provide that these aerial robots have the capability of landing in restricted areas by using the presented solution. This capacity will increase the application range of these robots. A study of this situation has been done to analyze the perching maneuver forces and evaluate the system. The solution presented is low-weight, low-sized, and also relatively inexpensive. Therefore, this solution may apply to most ornithopter robots. Design, analysis of the implied forces, development and experimental validation of the idea are presented in this work, demonstrating that the developed solution can overcome the ornithopter’s payload limitation providing an efficient and reliable solution.

Files (2.3 MB)
Name Size
ICUAS21_0055_FI (1).pdf
md5:083d648ca385b854f9dcc7db37ebe93b
2.3 MB Download
58
89
views
downloads
All versions This version
Views 5858
Downloads 8989
Data volume 201.1 MB201.1 MB
Unique views 4343
Unique downloads 8585

Share

Cite as