Published October 21, 2015 | Version v1
Dataset Open

Data from: Seasonal dynamics of megafauna on the deep West Antarctic Peninsula shelf in response to variable phytodetrital influx

  • 1. University of Sao Paulo
  • 2. University of Hawaii at Manoa
  • 3. Universidade Federal do Espírito Santo

Description

The deep West Antarctic Peninsula (WAP) shelf is characterized by intense deposition of phytodetritus during spring/summer months, while very little food material reaches the seafloor during winter. The response of the shelf benthic megafauna to this highly variable food supply is still poorly understood. In order to characterize the deposition of phytodetritus and the megabenthic community response, we deployed a seafloor time-lapse camera at approximately 590 m depth on the mid WAP shelf west of Anvers Island for 15 months. Seafloor photographs were taken at intervals of 12 or 24 h nearly continuously from 9 December 1999 (austral winter) to 20 March 2001 (summer) and analysed for phytodetritus deposition and megafaunal dynamics. Seafloor images indicated a marked seasonal arrival of greenish phytodetritus, with large interannual and seasonal variability in the coverage of depositing phytodetrital particles. The surface-deposit-feeding elasipod holothurians Protelpidia murrayi and Peniagone vignoni dominated the epibenthic megafauna throughout the year, frequently constituting more than 80% of the megafaunal abundance, attaining total densities of up to 2.4 individuals m−2. Elasipod abundances were significantly higher in summer than winter. During summer periods of high phytodetrital flux, Pr. murrayi produced faecal casts at higher rates, indicating intensified population-level feeding activity. In March–June 2000, faecal casts lasted longest, suggesting lower horizontal bioturbation activity during autumn–winter. Our data indicate that the Pr. murrayi population increases its feeding rates in response to increasing amounts and/or lability of organic matter on the sediment surface. Assuming that this species feeds on the top millimetre of the sediment, we estimate that, during periods of high phytodetrital flux, the Pr. murrayi population reworks one square metre of sediment surface in approximately 287 days. We suggest that Pr. murrayi is an important species for organic-carbon recycling on the deep WAP shelf, controlling the availability of deposited labile phytodetritus to the broader shelf benthic community.

Notes

Files

Files (1.2 MB)

Name Size Download all
md5:a44747f8837b6cf05f48382bd63f87ba
841.7 kB Download
md5:dfaf7db68c6a83b0ea07586507b1eaae
344.1 kB Download

Additional details

Related works

Is cited by
10.1098/rsos.140294 (DOI)