Published October 18, 2018 | Version v1
Dataset Open

Data from: Compromised knee internal rotation in total knee arthroplasty patients during stair climbing

  • 1. German Sport University Cologne

Description

Due to the significant role of rotational properties for normal knee function, this study aimed to investigate transverse plane kinematics and kinetics in total knee arthroplasty and unicondylar knee arthroplasty patients during activities of daily living compared to a healthy control group, including stair ascent and descent. The study participants consisted of a total knee arthroplasty group including posterior cruciate retaining and posterior stabilized designs as well as a unicondylar knee arthroplasty group and a healthy control group. Three-dimensional kinematics and kinetics were captured using a Vicon system and two Kistler force plates embedded in the floor and another two in a staircase. Inverse dynamics of the lower limbs was computed in Anybody™ Modeling System. Transverse plane joint angles and joint moments were analyzed utilizing the statistical non-parametric mapping approach, considering the entire curve shape for statistical analysis. The patients with total knee arthroplasty exhibited significantly reduced knee internal rotation of the operated knee compared to the control group and the patients' unimpaired limb, especially during the stair climbing tasks. Both unicondylar and total knee arthroplasty patients were found to have similar reduced internal rotation motion time series in stair descent. In conclusion, potential kinematic and kinetic benefits of unicondylar knee arthroplasty over total knee arthroplasty could not be proven in the current study. Aside from the usually mentioned reasons inducing constrained knee internal rotation in total knee arthroplasty patients, future studies should investigate to what extent co-contraction may contribute to this functional impairment in patients after knee arthroplasty surgery.

Notes

Files

c3d_data.zip

Files (218.9 MB)

Name Size Download all
md5:3f7965aaeb4e1044e51face14df9a0ea
218.9 MB Preview Download

Additional details

Related works