Published December 21, 2017 | Version v1
Dataset Open

Data from: Experimental evolution of infectious behaviour in a facultative ectoparasite

  • 1. University of Alberta

Description

Parasitic lifestyles have evolved many times in animals, but how such life-history strategies evolved from free-living ancestors remains a great puzzle. Transitional symbiotic strategies, such as facultative parasitism, are hypothesized evolutionary stepping-stones towards obligate parasitism. However, to consider this hypothesis, heritable genetic variation in infectious behaviour of transitional symbiotic strategies must exist. In this study, we experimentally evolved infectivity and estimated the additive genetic variation in a facultative parasite. We performed artificial selection experiments in which we selected for either increased or decreased propensity to infect in a facultatively parasitic mite (Macrocheles muscaedomesticae). Here, infectiousness was expressed in terms of mite attachment to a host (Drosophila hydei) and modeled as a threshold trait. Mites responded positively to selection for increased infectivity; realized heritability of infectious behaviour was significantly different from zero and estimated to be 16.6% (±4.4% SE). Further, infection prevalence was monitored for 20 generations post-selection. Selected lines continued to display relatively high levels of infection demonstrating a degree of genetic stability in infectiousness. Our study is the first to provide an estimate of heritability and additive genetic variation for infectious behaviour in a facultative parasite, which suggests natural selection can act upon facultative strategies with important implications for the evolution of parasitism.

Notes

Files

Files (24.3 kB)

Name Size Download all
md5:671531cbe5d6c2efd0b3998a3306b2a9
24.3 kB Download

Additional details

Related works

Is cited by
10.1111/jeb.13227 (DOI)