Published July 20, 2012 | Version v1
Dataset Open

Data from: Genetic evidence for the uncoupling of local aquaculture activities and a population of an invasive species – a case study of Pacific oysters (Crassostrea gigas)

Description

Human-mediated introduction of non-native species into coastal areas via aquaculture is one of the main pathways that can lead to biological invasions. To develop strategies to counteract invasions it is critical to determine whether populations establishing in the wild are self-sustaining or based on repeated introductions. Invasions by the Pacific oyster (Crassostrea gigas) have been associated with the growing oyster aquaculture industry worldwide. In this study, temporal genetic variability of farmed and wild oysters from the largest enclosed bay in Ireland was assessed to reconstruct the recent biological history of the feral populations using seven anonymous and seven microsatellites linked to expressed sequence tags (ESTs). There was no evidence of EST-linked markers showing footprints of selection. Allelic richness was higher in feral than in aquaculture samples (p=0.003, paired t-test). Significant deviations from Hardy-Weinberg equilibrium (HWE) due to heterozygote deficiencies were detected for almost all loci and samples, most likely explained by the presence of null-alleles. Relatively high genetic differentiation was found between aquaculture and feral oysters (largest pairwise multilocus FST 0.074, p < 0.01) and between year classes of oysters from aquaculture (largest pairwise multilocus FST 0.073, p < 0.01), which was also confirmed by the strong separation of aquaculture and wild samples using Bayesian clustering approaches. A ten-fold higher effective population size (Ne) – and a high number of private alleles – in wild oysters suggest an established self-sustaining feral population. The wild oyster population studied appears demographically independent from the current aquaculture activities in the estuary and alternative scenarios of introduction pathways are discussed.

Notes

Files

14lociDRYAD.txt

Files (28.8 kB)

Name Size Download all
md5:aa9b4869bc272c8af01c1e9a9ae5ea48
28.8 kB Preview Download

Additional details

Related works

Is cited by
10.1093/jhered/ess042 (DOI)