Published February 1, 2016 | Version v1
Dataset Open

Data from: Geographic origins and population genetics of bats killed at wind-energy facilities

  • 1. University of Maryland, College Park
  • 2. University of Vermont

Description

An unanticipated impact of wind-energy development has been large-scale mortality of insectivorous bats. In eastern North America, where mortality rates are among the highest in the world, the hoary bat (Lasiurus cinereus) and the eastern red bat (L. borealis) comprise the majority of turbine-associated bat mortality. Both species are migratory tree bats with widespread distributions; however, little is known regarding the geographic origins of bats killed at wind-energy facilities or the diversity and population structure of affected species. We addressed these unknowns by measuring stable hydrogen isotope ratios (δ2H) and conducting population genetic analyses of bats killed at wind-energy facilities in the central Appalachian Mountains (USA) to determine the summering origins, effective size, structure, and temporal stability of populations. Our results indicate that ~1% of hoary bat mortalities and ~57% of red bat mortalities derive from non-local sources, with no relationship between the proportion of non-local bats and sex, location of mortality, or month of mortality. Additionally, our data indicate that hoary bats in our sample consist of an unstructured population with a small effective size (Ne) and either a stable or declining history. Red bats also showed no evidence of population genetic structure, but in contrast to hoary bats, the diversity contained in our red bat samples is consistent with a much larger Ne that reflects a demographic expansion after a bottleneck. These results suggest that the impacts of mortality associated with intensive wind-energy development may affect bat species dissimilarly, with red bats potentially better able to absorb sustained mortality than hoary bats because of their larger Ne. Our results provide important baseline data and also illustrate the utility of stable isotopes and population genetics for monitoring bat populations affected by wind-energy development.

Notes

Files

ERBA_for_Tandem_original_tandem.txt

Files (79.3 kB)

Name Size Download all
md5:b2b76bce12a48e55d769bb41468936bd
17.4 kB Preview Download
md5:5454ffeb32fbd8bbaf923d1fb938014f
17.9 kB Download
md5:ab0470cdd24c44ed1ed6e533ceb1fe77
29.8 kB Preview Download
md5:192affab403a9d0869ac2f25ed4beebc
14.1 kB Download

Additional details

Related works

Is cited by
10.1890/15-0541 (DOI)